GNU Make

A Program for Directing Recompilation
Edition 0.48, for make Version 3.73 Beta.
April 1995

Richard M. Stallman and Roland McGrath

Table of Contents

o Oveview of neke
o How to Read This Manual
0 Problems and Bugs
« An Introduction to Makefiles
o What aRule Looks Like
o A Simple Makefile
o How nake Processes a Makefile
o Variables Make Makefiles Simpler
o Letting make Deduce the Commands
o Another Style of Makefile
0 Rulesfor Cleaning the Directory
o Writing Makefiles
0 What Makefiles Contain
o What Nameto Give Your Makefile
o Including Other Makefiles
o TheVariable MAKEFI LES
0 How Makefiles Are Remade
o Overriding Part of Another Makefile
o Writing Rules
0 Rule Syntax

o Using Wildcard Characters in File Names

g

O

s Wildcard Examples
a Pitfalls of Using Wildcards
= TheFunctionw | dcard

Searching Directories for Dependencies
= VPATH: Search Path for All Dependencies
= Thevpat h Directive
= Writing Shell Commands with Directory Search
= Directory Search and Implicit Rules
= Directory Search for Link Libraries
Phony Targets

Rules without Commands or Dependencies

Empty Target Files to Record Events

Special Built-in Target Names

Multiple Targets in aRule

Multiple Rules for One Target

Static Pattern Rules

s Syntax of Static Pattern Rules
s Static Pattern Rules versus Implicit Rules

Double-Colon Rules

Generating Dependencies Automatically

o Writing the Commands in Rules

g

O

d

d

d

O

Command Echoing

Command Execution

Parallel Execution

Errorsin Commands

Interrupting or Killing make

Recursive Use of nake

= How the MAKE Variable Works
= Communicating Variables to a Sub-make

= Communicating Options to a Sub-make

s The --print-directory' Option

Defining Canned Command Sequences

Using Empty Commands

How to Use Variables

d

O

Basics of Variable References

The Two Flavors of Variables

Advanced Features for Reference to Variables
= Substitution References
= Computed Variable Names

How Variables Get Their Values

Setting Variables

Appending More Text to Variables

Theoverri de Directive
Defining Variables Verbatim
Variables from the Environment

o Conditional Parts of Makefiles

d

O

O

Example of a Conditional
Syntax of Conditionals
Conditionals that Test Flags

o Functionsfor Transforming Text

O

O

g

g

d

O

Function Call Syntax
Functions for String Substitution and Analysis

Functions for File Names

Thef or each Function
Theori gi n Function
Theshel | Function

« How to Run nake

O

d

O

O

d

O

O

Arguments to Specify the Makefile
Arguments to Specify the Goals

Instead of Executing the Commands

Avoiding Recompilation of Some Files

Overriding Variables

Testing the Compilation of a Program

Summary of Options

o Using Implicit Rules

O

O

Using Implicit Rules

Catalogue of Implicit Rules

o Variables Used by Implicit Rules

o Chains of Implicit Rules

o Defining and Redefining Pattern Rules
= |Introduction to Pattern Rules

= Pattern Rule Examples
= Automatic Variables
= How Patterns Match
= Match-Anything Pattern Rules
= Canceling Implicit Rules
o Defining Last-Resort Default Rules
o Old-Fashioned Suffix Rules
o Implicit Rule Search Algorithm
» Using nake to Update Archive Files

o Archive Members as Targets

o Implicit Rule for Archive Member Targets

s Updating Archive Symbol Directories

o Dangers When Using Archives

o Suffix Rulesfor Archive Files
o Features of GNU make
o Incompatibilities and Missing Features

o Makefile Conventions

o Genera Conventions for Makefiles
o Utilitiesin Makefiles
o Standard Targets for Users

o Variables for Specifying Commands

o Variablesfor Installation Directories

« Quick Reference

o Complex Makefile Example

 Index of Concepts

« Index of Functions, Variables, & Directives

@shorttitlepage GNU Make Copyright (C) 1988, '89, '90, '91, '92, '93, '94, '95 Free Software Foundation,
Inc. Published by the Free Software Foundation
675 Massachusetts Avenue,

Cambridge, MA 02139 USA
Printed copies are available for $20 each.
ISBN 1-882114-50-7

Permission is granted to make and distribute verbatim copies of this manual provided the copyright notice
and this permission notice are preserved on al copies.

Permission is granted to copy and distribute modified versions of this manual under the conditions for
verbatim copying, provided that the entire resulting derived work is distributed under the terms of a
permission notice identical to this one.

Permission is granted to copy and distribute transations of this manual into another language, under the
above conditions for modified versions, except that this permission notice may be stated in atranslation
approved by the Free Software Foundation. Cover art by Etienne Suvasa.

Overview of make

The make utility automatically determines which pieces of alarge program need to be recompiled, and
Issues commands to recompile them. This manual describes GNU nake, which was implemented by
Richard Stallman and Roland McGrath. GNU make conforms to section 6.2 of |EEE Standard
1003.2-1992 (POSIX.2).

Our examples show C programs, since they are most common, but you can use make with any
programming language whose compiler can be run with a shell command. Indeed, make isnot limited to
programs. Y ou can use it to describe any task where some files must be updated automatically from others
whenever the others change.

To prepare to use make, you must write afile called the makefile that describes the rel ationships among
filesin your program and provides commands for updating each file. In a program, typicaly, the
executable file is updated from object files, which are in turn made by compiling source files.

Once a suitable makefile exists, each time you change some source files, this simple shell command:

make

suffices to perform all necessary recompilations. The make program uses the makefile data base and the
last-modification times of the files to decide which of the files need to be updated. For each of those files,
it issues the commands recorded in the data base.

Y ou can provide command line arguments to mak e to control which files should be recompiled, or how.
See section How to Run nake.

How to Read This Manual

If you are new to nake, or are looking for a general introduction, read the first few sections of each
chapter, skipping the later sections. In each chapter, the first few sections contain introductory or genera
information and the later sections contain specialized or technical information. The exception is section

An Introduction to Makefiles, all of which isintroductory.

If you are familiar with other make programs, see section Features of GNU nake, which liststhe
enhancements GNU nmake has, and section |Incompatibilities and Missing Features, which explains the
few things GNU nmake lacks that others have.

For a quick summary, see section Summary of Options, section Quick Reference, and section Specia
Built-in Target Names.

Problems and Bugs

If you have problems with GNU make or think you've found a bug, please report it to the devel opers; we
cannot promise to do anything but we might well want to fix it.

Before reporting a bug, make sure you've actually found areal bug. Carefully reread the documentation
and seeif it really says you can do what you're trying to do. If it's not clear whether you should be able to
do something or not, report that too; it's a bug in the documentation!

Before reporting abug or trying to fix it yourself, try to isolate it to the smallest possible makefile that
reproduces the problem. Then send us the makefile and the exact results mak e gave you. Also say what
you expected to occur; thiswill help us decide whether the problem was really in the documentation.

Once you've got a precise problem, please send electronic mail either through the Internet or via UUCP:

| nt ernet addr ess:
bug-gnu-util s@rep.ai.mt.edu

UUCP pat h:
mt-eddi el prep.ai.mt.edu! bug-gnu-utils

Please include the version number of make you are using. Y ou can get this information with the
command "make --version'. Be sure also to include the type of machine and operating system you are
using. If possible, include the contents of thefile” confi g. h' that is generated by the configuration
process.

Non-bug suggestions are always welcome as well. If you have questions about things that are unclear in
the documentation or are just obscure features, send a message to the bug reporting address. We cannot
guarantee you'll get help with your problem, but many seasoned nak e usersread the mailing list and they
will probably try to help you out. The maintainers sometimes answer such questions as well, when time
permits.

An Introduction to Makefiles

Y ou need afile caled a makefile to tell rake what to do. Most often, the makefile tells make how to
compile and link a program.

In this chapter, we will discuss a ssimple makefile that describes how to compile and link a text editor
which consists of eight C source files and three header files. The makefile can also tell make how to run
mi scellaneous commands when explicitly asked (for example, to remove certain files as a clean-up
operation). To see amore complex example of a makefile, see section Complex M akefile Example.

When make recompiles the editor, each changed C source file must be recompiled. If a header file has
changed, each C source file that includes the header file must be recompiled to be safe. Each compilation
produces an object file corresponding to the source file. Finally, if any source file has been recompiled, all
the object files, whether newly made or saved from previous compilations, must be linked together to
produce the new executable editor.

What a Rule Looks Like

A simple makefile consists of "rules’ with the following shape:

target ... : dependencies ...
conmmand

A target isusually the name of afilethat is generated by a program; examples of targets are executable or
object files. A target can also be the name of an action to carry out, such as "clean' (see section Phony

Targets).
A dependency isafile that isused as input to create the target. A target often depends on several files.

A command is an action that make carries out. A rule may have more than one command, each on its own
line. Please note: you need to put atab character at the beginning of every command line! Thisisan
obscurity that catches the unwary.

Usually acommand isin arule with dependencies and servesto create atarget file if any of the
dependencies change. However, the rule that specifies commands for the target need not have
dependencies. For example, the rule containing the delete command associated with the target “clean' does
not have dependencies.

A rule, then, explains how and when to remake certain files which are the targets of the particular rule.
make carries out the commands on the dependenciesto create or update the target. A rule can also explain
how and when to carry out an action. See section Writing Rules.

A makefile may contain other text besides rules, but a simple makefile need only contain rules. Rules may
look somewhat more complicated than shown in this template, but all fit the pattern more or less.

A Simple Makefile

Hereis astraightforward makefile that describes the way an executable file called edi t depends on eight
object fileswhich, in turn, depend on eight C source and three header files.

In this example, al the Cfilesinclude " def s. h' , but only those defining editing commands include
“conmand. h' , and only low level filesthat change the editor buffer include " buf f er . h' .

edit : main.o kbd.o command. o di splay.o \
insert.o search.o files.o utils.o
cc -0 edit main.o kbd.o command. o di splay.o \
insert.o search.o files.o utils.o

main.o : main.c defs.h
CC -C nmin.c
kbd.o : kbd.c defs.h command. h
cc -c kbd.c
command. o : conmmand. ¢ defs.h command. h
cc -c comuand. ¢
di splay.o : display.c defs.h buffer.h
cc -c display.c
insert.o : insert.c defs.h buffer.h
CC -C insert.c
search.o : search.c defs.h buffer.h
cc -c search.c
files.o : files.c defs.h buffer.h command. h
cc -c files.c
utils.o : utils.c defs.h
cc -c utils.c
cl ean :
rmedit main.o kbd.o command. o di splay.o \
insert.o search.o files.o utils.o

We split each long line into two lines using backsl ash-newling; thisis like using one long line, but is
easier to read.

To use this makefile to create the executablefilecalled " edi t ', type:

make

To use this makefile to delete the executable file and all the object files from the directory, type:

make cl ean

In the example makefile, the targets include the executable file "edit’, and the object files ‘'main.o’ and
"kbd.o'. The dependencies are files such as ‘main.c' and “defs.h'. In fact, each ".0' file is both atarget and a

dependency. Commands include “cc -c main.c' and "cc -c kbd.c'.

When atarget isafile, it needs to be recompiled or relinked if any of its dependencies change. In addition,
any dependencies that are themselves automatically generated should be updated first. In this example,
“edit' dependson each of the eight object files; the object file " mai n. o' depends on the sourcefile
“mai n. ¢' andonthe header file” defs. h' .

A shell command follows each line that contains a target and dependencies. These shell commands say
how to update the target file. A tab character must come at the beginning of every command line to
distinguish commands lines from other linesin the makefile. (Bear in mind that make does not know
anything about how the commands work. It is up to you to supply commands that will update the target
file properly. All make doesis execute the commands in the rule you have specified when the target file
needs to be updated.)

Thetarget "clean' isnot afile, but merely the name of an action. Since you normally do not want to carry
out the actionsin thisrule, "clean’ is not a dependency of any other rule. Consequently, make never does
anything with it unless you tell it specifically. Note that this rule not only is not a dependency, it also does
not have any dependencies, so the only purpose of the ruleisto run the specified commands. Targets that
do not refer to files but are just actions are called phony targets. See section Phony Targets, for

information about this kind of target. See section Errorsin Commands, to see how to cause nake to
ignore errors from r mor any other command.

How make Processes a Makefile

By default, make starts with the first rule (not counting rules whose target names start with °."). Thisis
called the default goal. (Goals are the targets that mak e strives ultimately to update. See section
Arguments to Specify the Goals.)

In the simple example of the previous section, the default goal is to update the executable program
“edi t';therefore, we put that rule first.

Thus, when you give the command:

make

mak e reads the makefile in the current directory and begins by processing the first rule. In the example,
thisruleisfor relinking ~ edi t ' ; but before nake can fully processthisrule, it must process the rules for
thefilesthat “ edi t' depends on, which in this case are the object files. Each of these filesis processed
according to its own rule. These rules say to update each ".0' file by compiling its source file. The
recompilation must be done if the source file, or any of the header files named as dependencies, is more
recent than the object file, or if the object file does not exist.

The other rules are processed because their targets appear as dependencies of the goal. If some other rule
Is not depended on by the goal (or anything it depends on, etc.), that rule is not processed, unless you tell
make to do so (with acommand such asmake cl ean).

Before recompiling an object file, make considers updating its dependencies, the source file and header
files. This makefile does not specify anything to be done for them--the ".c' and ".h' files are not the targets

of any rules--so nake does nothing for these files. But neke would update automatically generated C
programs, such as those made by Bison or Y acc, by their own rules at thistime.

After recompiling whichever object files need it, make decides whether to relink ~ edi t ' . Thismust be
doneif thefile edi t' does not exist, or if any of the object files are newer than it. If an object file was
just recompiled, it isnow newer than " edit' ,so edit' isrelinked.

Thus, if we changethefile i nsert. c' andrunmake, nake will compile that file to update
“insert.o' ,andthenlink " edit' .If wechangethefile’ command. h' and run make, make will
recompile the object files™ kbd. o' , " command. o' and fil es. o' andthenlink thefile edit' .

Variables Make Makefiles Simpler

In our example, we had to list all the object filestwiceintherulefor ~ edi t ' (repeated here):

edit : main.o kbd.o command. o di splay.o \
insert.o search.o files.o utils.o
cc -0 edit main.o kbd.o command. o di splay.o \
Insert.o search.o files.o utils.o

Such duplication is error-prone; if anew object file is added to the system, we might add it to one list and
forget the other. We can eliminate the risk and simplify the makefile by using avariable. Variables allow a
text string to be defined once and substituted in multiple places later (see section How to Use Variables).

It is standard practice for every makefile to have avariable named obj ect s, OBJECTS, obj s, OBJS,
obj , or OBJ whichisalist of all object file names. We would define such avariable obj ect s witha
line like thisin the makefile:

objects = main.o kbd.o conmand. o display.o \
Insert.o search.o files.o utils.o

Then, each place we want to put alist of the object file names, we can substitute the variable's value by
writing “$(objects)' (see section How to Use Variables).

Here is how the complete simple makefile looks when you use a variable for the object files:

objects = main.o kbd.o conmand. o display.o \
insert.o search.o files.o utils.o

edit : $(objects)
cc -0 edit $(objects)
main.o : main.c defs.h
CC -C main.c
kbd.o : kbd.c defs.h command. h
cc -c kbd.c
command. o : command. ¢ defs. h conmand. h
cc -c conmmand. c

di splay.o : display.c defs.h buffer.h
cc -c display.c

insert.o : insert.c defs.h buffer.h
CC -C insert.c

search.o : search.c defs.h buffer.h
CcC -Cc search.c

files.o : files.c defs.h buffer.h command. h
cc -c files.c

utils.o : utils.c defs.h
cc -c utils.c

cl ean :
rmedit $(objects)

Letting make Deduce the Commands

It is not necessary to spell out the commands for compiling the individual C source files, because make
can figure them out: it has an implicit rule for updating a ".o' file from a correspondingly named ".c' file
using a cc -c' command. For example, it will use the command “cc -¢ main.c -0 main.o' to compile

“mai n. c' into” mai n. o' . We can therefore omit the commands from the rules for the object files. See
section Using Implicit Rules.

When a ".c' file is used automatically in thisway, it is also automatically added to the list of dependencies.
We can therefore omit the ".c' files from the dependencies, provided we omit the commands.

Hereis the entire example, with both of these changes, and avariable obj ect s as suggested above:

objects = main.o kbd.o command. o display.o \
insert.o search.o files.o utils.o

edit : $(objects)
cc -0 edit $(objects)

main.o : defs.h

kbd.o : defs.h conmand. h

command. o : defs.h conmand. h

di splay.o : defs.h buffer.h
insert.o : defs.h buffer.h

search.o : defs.h buffer.h

files.o : defs.h buffer.h conmand. h
utils.o : defs.h

. PHONY : cl ean
cl ean :
-rmedit $(objects)

Thisis how we would write the makefile in actual practice. (The complications associated with “clean’ are

described elsewhere. See section Phony Targets, and section Errors in Commands.)

Because implicit rules are so convenient, they are important. Y ou will see them used frequently.

Another Style of Makefile

When the objects of a makefile are created only by implicit rules, an alternative style of makefileis
possible. In this style of makefile, you group entries by their dependenciesinstead of by their targets. Here
iswhat one looks like:

objects = main.o kbd.o conmand. o display.o \
Insert.o search.o files.o utils.o

edit : $(objects)
cc -0 edit $(objects)

$(objects) : defs.h
kbd.o command.o files.o : command. h
di splay.o insert.o search.o files.o : buffer.h

Here ™ def s. h' isgiven asadependency of al the object files; " command. h' and " buffer. h' are
dependencies of the specific object fileslisted for them.

Whether thisis better is a matter of taste: it is more compact, but some people dislike it because they find
it clearer to put all the information about each target in one place.

Rules for Cleaning the Directory

Compiling a program is not the only thing you might want to write rules for. Makefiles commonly tell
how to do afew other things besides compiling a program: for example, how to delete al the object files
and executables so that the directory is "clean'.

Hereis how we could write amake rule for cleaning our example editor:
cl ean:
rmedit $(objects)
In practice, we might want to write the rule in a somewhat more complicated manner to handle

unanticipated situations. We would do this:

. PHONY : cl ean
cl ean :
-rmedit $(objects)

This prevents mak e from getting confused by an actual filecalled " cl ean' and causesit to continuein
spite of errors from r m (See section Phony Targets, and section Errors in Commands.)

A rule such as this should not be placed at the beginning of the makefile, because we do not want it to run
by default! Thus, in the example makefile, we want the rule for edi t , which recompiles the editor, to
remain the default goal.

Sincecl ean isnot adependency of edi t , thisrulewill not run at al if we give the command “make'
with no arguments. In order to make the rule run, we have to type "make clean'. See section How to Run

make.

Writing Makefiles

The information that tells make how to recompile a system comes from reading a data base called the
makefile.

What Makefiles Contain

Makefiles contain five kinds of things: explicit rules, implicit rules, variable definitions, directives, and
comments. Rules, variables, and directives are described at length in later chapters.

« Anexplicit rule says when and how to remake one or morefiles, called the rule'stargets. It lists the
other files that the targets depend on, and may also give commands to use to create or update the
targets. See section Writing Rules.

« Animplicit rule says when and how to remake a class of files based on their names. It describes
how atarget may depend on afile with aname similar to the target and gives commands to create or
update such atarget. See section Using Implicit Rules.

« A variabledefinition isaline that specifies atext string value for a variable that can be substituted
into the text later. The simple makefile example shows a variable definition for obj ect s asalist
of all object files (see section Variables Make Makefiles Simpler).

« A directiveisacommand for make to do something special while reading the makefile. These
include:

0 Reading another makefile (see section Including Other Makefiles).

o Deciding (based on the values of variables) whether to use or ignore a part of the makefile
(see section Conditional Parts of Makefiles).

0 Defining avariable from a verbatim string containing multiple lines (see section Defining
Variables Verbatim).

« # inalineof amakefile starts acomment. It and the rest of the line are ignored, except that a
trailing backslash not escaped by another backslash will continue the comment across multiple
lines. Comments may appear on any of the linesin the makefile, except withinadef i ne directive,
and perhaps within commands (where the shell decides what is a comment). A line containing just a
comment (with perhaps spaces before it) is effectively blank, and isignored.

What Name to Give Your Makefile

By default, when nake looks for the makefile, it tries the following names, in order: - GNUmakef il e',
“makefile' and Makefile'.

Normally you should call your makefile either “ nakefil e’ or Makefil e' . (Werecommend
“Makefil e' becauseit appears prominently near the beginning of a directory listing, right near other
important files such as™ READVE' .) Thefirst name checked, - GNUmakef i | €' , isnot recommended for
most makefiles. You should use this name if you have a makefile that is specific to GNU make, and will
not be understood by other versions of make. Other make programslook for “ nakefi | e' and
“Makefile',butnot” GNUrekefile'.

If make finds none of these names, it does not use any makefile. Then you must specify agoal with a
command argument, and make will attempt to figure out how to remake it using only its built-in implicit
rules. See section Using Implicit Rules.

If you want to use a nonstandard name for your makefile, you can specify the makefile name with the *-f'
or “--file' option. The arguments "-f name' or “--file=name’ tell mak e to read the file name as the makefile.
If you use more than one "-f' or “--fil€' option, you can specify several makefiles. All the makefiles are
effectively concatenated in the order specified. The default makefile names ™ GNUnakefi | e,
"makefile' and Makefile' arenot checked automaticaly if you specify "-f' or “--file'.

Including Other Makefiles

Thei ncl ude directivetells make to suspend reading the current makefile and read one or more other
makefiles before continuing. The directive is aline in the makefile that looks like this:

i nclude fil enanes...
filenames can contain shell file name patterns.

Extra spaces are allowed and ignored at the beginning of the line, but atab is not allowed. (If the line
begins with atab, it will be considered a command line.) Whitespace is required betweeni ncl ude and
the file names, and between file names; extra whitespace is ignored there and at the end of the directive. A
comment starting with "# is allowed at the end of the line. If the file names contain any variable or
function references, they are expanded. See section How to Use Variables.

For example, if you havethree ™ . nk' files, a. nk', b.nk',and c. nk' ,and $(bar) expandsto
bi sh bash, then the following expression

i nclude foo *.nk $(bar)

Isequivalent to

i nclude foo a.nk b.nk c.nk bish bash

When make processesani ncl ude directive, it suspends reading of the containing makefile and reads

from each listed file in turn. When that is finished, make resumes reading the makefile in which the
directive appears.

Oneoccasion for using i ncl ude directivesiswhen several programs, handled by individual makefilesin
various directories, need to use acommon set of variable definitions (see section Setting Variables) or

pattern rules (see section Defining and Redefining Pattern Rules).

Another such occasion is when you want to generate dependencies from source files automatically; the
dependencies can be put in afile that isincluded by the main makefile. This practiceis generaly cleaner
than that of somehow appending the dependencies to the end of the main makefile as has been
traditionally done with other versions of make. See section Generating Dependencies Automatically.

If the specified name does not start with a slash, and the file is not found in the current directory, several
other directories are searched. First, any directories you have specified with the *-1' or “--include-dir'
option are searched (see section Summary of Options). Then the following directories (if they exist) are
searched, inthisorder: ~ prefi x/i nclude' (normally "/ usr/ | ocal /i ncl ude')
“lusr/gnu/include', /usr/local/include', /usr/include'.

If an included makefile cannot be found in any of these directories, awarning message is generated, but it
Isnot an immediately fatal error; processing of the makefile containing thei ncl ude continues. Once it
has finished reading makefiles, make will try to remake any that are out of date or don't exist. See section
How Makefiles Are Remade. Only after it hastried to find away to remake a makefile and failed, will

mak e diagnose the missing makefile as afatal error.

If you want make to simply ignore a makefile which does not exist and cannot be remade, with no error
message, use the - i ncl ude directiveinstead of i ncl ude, likethis:

-include fil enanes. ..

Thisisactslikei ncl ude in every way except that thereis no error (not even awarning) if any of the
filenames do not exist.

The Variable MAKEFI LES

If the environment variable MAKEFI LES is defined, make considersits value as alist of names (separated
by whitespace) of additional makefiles to be read before the others. This works much likethei ncl ude
directive: various directories are searched for those files (see section Including Other Makefiles). In
addition, the default goal is never taken from one of these makefiles and it is not an error if the files listed
in MAKEFI LES are not found.

The main use of MAKEFI LES isin communication between recursive invocations of make (see section
Recursive Use of make). It usually is not desirable to set the environment variable before atop-level
invocation of make, because it is usually better not to mess with a makefile from outside. However, if you
are running mak e without a specific makefile, a makefilein MAKEFI LES can do useful thingsto help the
built-in implicit rules work better, such as defining search paths (see section Searching Directories for
Dependencies).

Some users are tempted to set MAKEFI LES in the environment automatically on login, and program
makefiles to expect thisto be done. Thisisavery bad idea, because such makefiles will fail to work if run
by anyone else. It is much better to write explicit i ncl ude directivesin the makefiles. See section
Including Other M akefiles.

How Makefiles Are Remade

Sometimes makefiles can be remade from other files, such as RCS or SCCSfiles. If amakefile can be
remade from other files, you probably want make to get an up-to-date version of the makefile to read in.

To thisend, after reading in all makefiles, make will consider each as agoal target and attempt to update
it. If amakefile has arule which says how to update it (found either in that very makefile or in another
one) or if an implicit rule appliesto it (see section Using Implicit Rules), it will be updated if necessary.
After all makefiles have been checked, if any have actually been changed, make starts with a clean date
and reads all the makefiles over again. (It will also attempt to update each of them over again, but
normally thiswill not change them again, since they are already up to date.)

If the makefiles specify a double-colon rule to remake a file with commands but no dependencies, that file
will always be remade (see section Double-Colon Rules). In the case of makefiles, a makefile that has a
double-colon rule with commands but no dependencies will be remade every time make isrun, and then
again after make starts over and reads the makefilesin again. This would cause an infinite loop: make
would constantly remake the makefile, and never do anything else. So, to avoid this, make will not
attempt to remake makefiles which are specified as double-colon targets but have no dependencies.

If you do not specify any makefilesto be read with "-f' or "--file' options, make will try the default
makefile names; see section What Name to Give Y our Makefile. Unlike makefiles explicitly requested
with *-f' or "--file' options, make is not certain that these makefiles should exist. However, if a default

makefile does not exist but can be created by running make rules, you probably want the rules to be run
so that the makefile can be used.

Therefore, if none of the default makefiles exists, make will try to make each of them in the same order in
which they are searched for (see section What Name to Give Y our Makefile) until it succeedsin making
one, or it runs out of namesto try. Note that it isnot an error if make cannot find or make any makefile; a
makefile is not always necessary.

When you use the "-t' or "--touch’ option (see section Instead of Executing the Commands), you would not

want to use an out-of-date makefile to decide which targets to touch. So the "-t' option has no effect on
updating makefiles; they are really updated even if "-t' is specified. Likewise, "-g' (or "--question’) and "-n'
(or "--just-print’) do not prevent updating of makefiles, because an out-of-date makefile would result in the
wrong output for other targets. Thus, ‘'make -f mfile -n foo' will update ™ nf i | €' , read it in, and then
print the commands to update " f oo’ and its dependencies without running them. The commands printed
for " f oo" will bethose specified in the updated contentsof " nfi |l e' .

However, on occasion you might actually wish to prevent updating of even the makefiles. Y ou can do this
by specifying the makefiles as goals in the command line as well as specifying them as makefiles. When
the makefile name is specified explicitly as a goal, the options "-t' and so on do apply to them.

Thus, "'make -f mfile -n mfile foo' would read the makefile " nf i | ' , print the commands needed to
update it without actually running them, and then print the commands needed to update " f oo" without
running them. The commandsfor * f 00" will be those specified by the existing contentsof " nfil e’ .

Overriding Part of Another Makefile

Sometimes it is useful to have a makefile that is mostly just like another makefile. Y ou can often use the
“include’ directive to include one in the other, and add more targets or variable definitions. However, if the
two makefiles give different commands for the same target, make will not let you just do this. But thereis
another way.

In the containing makefile (the one that wants to include the other), you can use a match-anything pattern
rule to say that to remake any target that cannot be made from the information in the containing makefile,
mak e should look in another makefile. See section Defining and Redefining Pattern Rules, for more

information on pattern rules.

For example, if you have amakefile called ™ Makefi | e' that says how to make the target “foo' (and
other targets), you can write amakefile called * GNUmakef i | e' that contains:

f oo:

frobnicate > foo
% force

@(MAKE) -f Makefile $@
force: :

If you say ‘make foo', make will find * GNUmakef i | €' , read it, and see that to make " f 00" , it needsto
run the command “frobnicate > foo'. If you say ‘make bar', nake will find no way to make ™ bar' in

" GNUmakef i | e', soit will use the commands from the pattern rule: “make -f Makefile bar'. If
“Makefil e' providesarulefor updating ~ bar ' , make will apply the rule. And likewise for any other
target that * GNUnmakefi | e' doesnot say how to make.

The way thisworks is that the pattern rule has a pattern of just "%', so it matches any target whatever. The
rule specifies adependency " f or ce' , to guarantee that the commands will be run even if the target file
already exists. Wegive " f or ce' target empty commands to prevent make from searching for an
implicit rule to build it--otherwise it would apply the same match-anything ruleto " f or ce' itself and
create a dependency loop!

Writing Rules

A rule appears in the makefile and says when and how to remake certain files, called the rule's targets
(most often only one per rule). It lists the other files that are the dependencies of the target, and commands
to use to create or update the target.

The order of rulesis not significant, except for determining the default goal: the target for make to
consider, if you do not otherwise specify one. The default goal is the target of the first rulein the first
makefile. If the first rule has multiple targets, only the first target is taken as the default. There are two
exceptions. atarget starting with a period is not a default unlessit contains one or more slashes, /', as
well; and, atarget that defines a pattern rule has no effect on the default goal. (See section Defining and

Redefining Pattern Rules.)

Therefore, we usually write the makefile so that the first rule is the one for compiling the entire program
or all the programs described by the makefile (often with atarget called "all"). See section Arguments to

Specify the Goals.

Rule Syntax

In general, arulelooks like this:

targets : dependencies
command

or like this:

targets : dependencies ; comrand
command

The targets are file names, separated by spaces. Wildcard characters may be used (see section Using
Wildcard Charactersin File Names) and a name of theform ™ a(m ' represents member m in archivefile
a (see section Archive Members as Targets). Usually there is only one target per rule, but occasionally
there is areason to have more (see section Multiple Targetsin aRule).

The command lines start with atab character. The first command may appear on the line after the
dependencies, with atab character, or may appear on the same line, with a semicolon. Either way, the
effect isthe same. See section Writing the Commands in Rules.

Because dollar signs are used to start variable references, if you really want adollar signinaruleyou
must write two of them, "$$' (see section How to Use Variables). Y ou may split along line by inserting a

backslash followed by a newline, but thisis not required, as make places no limit on the length of alinein
amakefile.

A rule tells make two things: when the targets are out of date, and how to update them when necessary.

The criterion for being out of date is specified in terms of the dependencies, which consist of file names
separated by spaces. (Wildcards and archive members (see section Using mak e to Update Archive Files)

are allowed here too.) A target is out of dateif it does not exist or if it is older than any of the
dependencies (by comparison of last-modification times). The ideais that the contents of the target file are
computed based on information in the dependencies, so if any of the dependencies changes, the contents
of the existing target file are no longer necessarily valid.

How to update is specified by commands. These are lines to be executed by the shell (normally “sh’), but
with some extra features (see section Writing the Commands in Rules).

Using Wildcard Characters in File Names

A single file name can specify many files using wildcard characters. The wildcard charactersin make are
7 and [...], the same asin the Bourne shell. For example, " *. ¢' specifiesalist of al thefiles (in
the working directory) whose namesend in ".c'.

The character "~ at the beginning of afile name also has special significance. If alone, or followed by a
slash, it represents your home directory. For example ™ ~/ bi n* expandsto " / honre/ you/ bi n' . If the
"~ isfollowed by aword, the string represents the home directory of the user named by that word. For
example " ~j ohn/ bi n' expandsto "/ hone/ j ohn/ bi n' .

Wildcard expansion happens automatically in targets, in dependencies, and in commands (where the shell
does the expansion). In other contexts, wildcard expansion happens only if you request it explicitly with
thew | dcar d function.

The special significance of awildcard character can be turned off by preceding it with a backslash. Thus,
“foo\ *bar' would refer to a specific file whose name consists of “foo', an asterisk, and "bar".

Wildcard Examples

Wildcards can be used in the commands of arule, where they are expanded by the shell. For example, here
iIsaruleto delete all the object files:

cl ean:
rm-f *.0

Wildcards are also useful in the dependencies of arule. With the following rule in the makefile, ‘'make
print" will print all the ".c' files that have changed since the last time you printed them:

print: *.c
| pr -p $?
touch print

Thisruleuses ™ pri nt' asanempty target file; see section Empty Target Files to Record Events. (The
automatic variable "$7 is used to print only those files that have changed; see section Automatic

Variables.)

Wildcard expansion does not happen when you define avariable. Thus, if you write this:

objects = *.0

then the value of the variable obj ect s isthe actual string *.0". However, if you use the value of

obj ect s in atarget, dependency or command, wildcard expansion will take place at that time. To set
obj ect s to the expansion, instead use:

objects := $(wildcard *.0)

See section The Functionwi | dcar d.

Pitfalls of Using Wildcards

Now hereis an example of anaive way of using wildcard expansion, that does not do what you would
intend. Suppose you would like to say that the executablefile " f 00" is made from all the object filesin
the directory, and you write this:

objects = *.0

foo : $(objects)
cc -o foo $(CFLAGS) $(objects)

The value of obj ect s isthe actual string *.0'. Wildcard expansion happensin therulefor " f 00" , so
that each existing ".0' file becomes a dependency of * f oo' and will be recompiled if necessary.

But what if you delete all the ".0' files? When awildcard matches nofiles, it isleft asit is, sothen ™ f 00"
will depend on the oddly-named file ™ *. o' . Since no such fileislikely to exist, make will give you an
error saying it cannot figure out how to make ™ *. o' . Thisis not what you want!

Actually it is possible to obtain the desired result with wildcard expansion, but you need more
sophisticated techniques, including thewi | dcar d function and string substitution. These are described in
the following section.

The Function wi | dcar d

Wildcard expansion happens automatically in rules. But wildcard expansion does not normally take place
when avariable is set, or inside the arguments of afunction. If you want to do wildcard expansion in such
places, you need to usethewi | dcar d function, like this:

$(wildcard pattern...)

This string, used anywhere in a makefile, is replaced by a space-separated list of names of existing files
that match one of the given file name patterns. If no existing file name matches a pattern, then that pattern
Is omitted from the output of thewi | dcar d function. Note that thisis different from how unmatched

wildcards behave in rules, where they are used verbatim rather than ignored (see section Pitfalls of Using
Wildcards).

Oneuse of thewi | dcar d functionisto get alist of al the C source filesin adirectory, like this:

$(wil dcard *.c)

We can change the list of C source filesinto alist of object files by replacing the ".0" suffix with ".c' in the
result, like this:

$(pat subst % c, % o, $(w I dcard *.c))

(Here we have used another function, pat subst . See section Functions for String Substitution and
Analysis.)

Thus, a makefile to compile all C source filesin the directory and then link them together could be written
asfollows:

obj ects := $(patsubst %c, %o, $(wildcard *.c))

foo : $(objects)
cc -o foo $(objects)

(This takes advantage of the implicit rule for compiling C programs, so there is no need to write explicit
rules for compiling the files. See section The Two Flavors of Variables, for an explanation of ":=', which is

avariant of =)

Searching Directories for Dependencies

For large systems, it is often desirable to put sources in a separate directory from the binaries. The
directory search features of make facilitate this by searching several directories automatically to find a
dependency. When you redistribute the files among directories, you do not need to change the individual
rules, just the search paths.

VPATH: Search Path for All Dependencies

The value of the mak e variable VPATH specifies alist of directories that make should search. Most often,
the directories are expected to contain dependency files that are not in the current directory; however,
VPATH specifies a search list that make appliesfor all files, including files which are targets of rules.

Thus, if afilethat islisted as atarget or dependency does not exist in the current directory, make searches
the directories listed in VPATH for afile with that name. If afileisfound in one of them, that file becomes
the dependency. Rules may then specify the names of source filesin the dependencies as if they all existed
in the current directory. See section Writing Shell Commands with Directory Search.

In the VPATH variable, directory names are separated by colons or blanks. The order in which directories

are listed is the order followed by make inits search.

For example,

VPATH = src: ../ headers

specifies a path containing two directories, " src' and " . ./ header s' , which make searchesin that
order.

With this value of VPATH, the following rule,

foo.o : foo.c

Isinterpreted asif it were written like this:

foo.o : src/foo.c

assuming thefile " f oo. ¢' doesnot exist in the current directory but isfound in the directory ~ src' .

The vpat h Directive

Similar to the VPATH variable but more selectiveisthe vpat h directive (note lower case), which alows
you to specify a search path for a particular class of file names, those that match a particular pattern. Thus
you can supply certain search directories for one class of file names and other directories (or none) for
other file names.

There are three forms of the vpat h directive:
vpath pattern directories

Specify the search path directories for file names that match pattern. The search path, directories, is
alist of directoriesto be searched, separated by colons or blanks, just like the search path used in
the VPATH variable.

vpath pattern
Clear out the search path associated with pattern.
vpat h
Clear all search paths previoudly specified with vpat h directives.

A vpat h patternisastring containing a %' character. The string must match the file name of a
dependency that is being searched for, the "%' character matching any sequence of zero or more characters
(asin pattern rules; see section Defining and Redefining Pattern Rules). For example, % h matches files
that endin. h. (If thereisno "%, the pattern must match the dependency exactly, which is not useful very
often.)

%' charactersin avpat h directive's pattern can be quoted with preceding backslashes ('\'). Backslashes
that would otherwise quote "%' characters can be quoted with more backslashes. Backslashes that quote
%' characters or other backslashes are removed from the pattern before it is compared to file names.
Backslashes that are not in danger of quoting "%' characters go unmolested.

When a dependency failsto exist in the current directory, if the patternin avpat h directive matches the
name of the dependency file, then the directoriesin that directive are searched just like (and before) the
directoriesin the VPATH variable.

For example,

vpath % h ../ headers

tells mak e to look for any dependency whose nameendsin ™. h' inthedirectory " . ./ header s’ if the
fileisnot found in the current directory.

If several vpat h patterns match the dependency file's name, then make processes each matching vpat h
directive one by one, searching all the directories mentioned in each directive. make handles multiple
vpat h directivesin the order in which they appear in the makefile; multiple directives with the same
pattern are independent of each other.

Thus,
vpath % c foo

vpath % Dblish
vpath % c bar

will look for afileendingin".c'in” f oo' ,then bl i sh', then bar', while
vpath % c foo: bar
vpath % blish

will look for afileendingin ".c'in” f 00" ,then " bar' ,then bl i sh'.
Writing Shell Commands with Directory Search

When a dependency is found in another directory through directory search, this cannot change the
commands of the rule; they will execute as written. Therefore, you must write the commands with care so
that they will ook for the dependency in the directory where make findsit.

This is done with the automatic variables such as "$' (see section Automatic Variables). For instance, the

value of "$ isalist of al the dependencies of the rule, including the names of the directoriesin which
they were found, and the value of "$@' is the target. Thus:

foo.o : foo.c
cc -¢c $(CFLAGS) $" -0 $@

(The variable CFLAGS exists so you can specify flags for C compilation by implicit rules; we use it here
for consistency so it will affect all C compilations uniformly; see section Variables Used by Implicit

Rules.)

Often the dependencies include header files as well, which you do not want to mention in the commands.
The automatic variable "$<' isjust the first dependency:

VPATH = src: ../ headers
foo.o : foo.c defs.h hack.h
cc -c $(CFLAGS) $< -0 $@

Directory Search and Implicit Rules

The search through the directories specified in VPATH or with vpat h aso happens during consideration
of implicit rules (see section Using Implicit Rules).

For example, when afile ™ f 00. 0' hasno explicit rule, make considersimplicit rules, such asthe
built-in ruleto compile ™ f 0o. ¢' if that file exists. If such afileislacking in the current directory, the
appropriate directories are searched for it. If * f 00. ¢' exists (or is mentioned in the makefile) in any of
the directories, the implicit rule for C compilation is applied.

The commands of implicit rules normally use automatic variables as a matter of necessity; consequently
they will use the file names found by directory search with no extra effort.

Directory Search for Link Libraries

Directory search appliesin a specia way to libraries used with the linker. This special feature comesinto
play when you write a dependency whose name is of the form “-Iname'. (Y ou can tell something strangeis
going on here because the dependency is normally the name of afile, and the file name of the library looks
like ™ I'i bnane. a' , not like "-Iname'.)

When a dependency's name has the form “-Iname’, make handlesit specially by searching for the file

“li bnanme. a' inthe current directory, in directories specified by matching vpat h search paths and the
VPATH search path, and then in the directories /I i b' , " /usr/1ib' ,and prefix/lib" (normaly
“lusr/local/lib").

For example,
foo : foo.c -Ilcurses
cc $ -0 $@

would cause the command “cc foo.c /usr/lib/libcurses.a -0 foo' to be executed when ™ f 00" isolder than
"foo.c'" orthan /usr/lib/libcurses.a'.

Phony Targets

A phony target is one that is not really the name of afile. It isjust a name for some commands to be
executed when you make an explicit request. There are two reasons to use a phony target: to avoid a
conflict with afile of the same name, and to improve performance.

If you write arule whose commands will not create the target file, the commands will be executed every
time the target comes up for remaking. Here is an example:

cl ean:
rm*.o tenp

Because the r mcommand does not create afilenamed ™ ¢l ean’ , probably no such file will ever exist.
Therefore, the r mcommand will be executed every time you say “make clean'.

The phony target will cease to work if anything ever does create afile named ™ ¢l ean’ inthisdirectory.
Since it has no dependencies, thefile ™ cl ean’ would inevitably be considered up to date, and its
commands would not be executed. To avoid this problem, you can explicitly declare the target to be
phony, using the special target . PHONY (see section Specia Built-in Target Names) as follows:

. PHONY : cl ean

Oncethisis done, "'make clean’ will run the commands regardless of whether there is afile named
“clean'.

Since it knows that phony targets do not name actual files that could be remade from other files, make
skips the implicit rule search for phony targets (see section Using Implicit Rules). Thisiswhy declaring a

target phony is good for performance, even if you are not worried about the actual file existing.

Thus, you first write the line that states that cl ean is aphony target, then you write therule, like this:

. PHONY: cl ean
cl ean:
rm*.o tenp

A phony target should not be a dependency of areal target file; if it is, its commands are run every time
make goes to update that file. Aslong as a phony target is never a dependency of areal target, the phony
target commands will be executed only when the phony target is a specified goal (see section Arguments

to Specify the Goals).

Phony targets can have dependencies. When one directory contains multiple programs, it is most
convenient to describe all of the programsin one makefile ™ . / Makefi | e' . Since the target remade by
default will be the first one in the makefile, it is common to make this a phony target named “all' and give
it, as dependencies, all the individual programs. For example:

all : progl prog2 prog3
. PHONY : all

progl : progl.o utils.o
cc -0 progl progl.o utils.o

prog2 : prog2.o
CC -0 prog2 prog2.o0

prog3 : prog3.0 sort.o utils.o
CC -0 prog3 prog3.0 sort.o utils.o

Now you can say just ‘make' to remake all three programs, or specify as arguments the ones to remake (as
in “make progl prog3").

When one phony target is a dependency of another, it serves as a subroutine of the other. For example,
here "'make cleanall’ will delete the object files, the difference files, and the file ™ pr ogr anmi :

. PHONY: cl eanall cleanobj cleandiff

cleanall : cleanobj cleandiff
rm program

cl eanobj
rm*.o

cl eandi ff :
rm*.diff

Rules without Commands or Dependencies

If arule has no dependencies or commands, and the target of the rule is a nonexistent file, then make
Imagines this target to have been updated whenever itsruleis run. Thisimplies that al targets depending
on this one will always have their commands run.

An example will illustrate this:
cl ean: FORCE

rm $(obj ects)
FORCE:

Here the target "FORCE' satisfies the special conditions, so thetarget * ¢l ean' that dependsonitis
forced to run its commands. There is nothing special about the name "FORCE!, but that is one name
commonly used this way.

Asyou can see, using FORCE' thisway has the same resultsasusing .PHONY : clean'.

Using .PHONY" is more explicit and more efficient. However, other versions of make do not support
".PHONY"; thus "FORCE' appears in many makefiles. See section Phony Targets.

Empty Target Files to Record Events

The empty target is a variant of the phony target; it is used to hold commands for an action that you
request explicitly from time to time. Unlike a phony target, this target file can really exist; but the file's
contents do not matter, and usually are empty.

The purpose of the empty target fileis to record, with its last-modification time, when the rule's
commands were last executed. It does so because one of the commandsisat ouch command to update

the target file.

The empty target file must have some dependencies. When you ask to remake the empty target, the
commands are executed if any dependency is more recent than the target; in other words, if a dependency
has changed since the last time you remade the target. Here is an example:

print: foo.c bar.c
| pr -p $?
touch print

With thisrule, "'make print' will executethe| pr command if either source file has changed since the last
"make print'. The automatic variable "$? is used to print only those files that have changed (see section
Automatic Variables).

Special Built-in Target Names

Certain names have special meanings if they appear as targets.
. PHONY

The dependencies of the special target . PHONY are considered to be phony targets. When it istime
to consider such atarget, make will run its commands unconditionally, regardless of whether afile
with that name exists or what its last-modification time is. See section Phony Targets.

. SUFFI XES

The dependencies of the special target . SUFFI XES are the list of suffixesto be used in checking
for suffix rules. See section Old-Fashioned Suffix Rules.

. DEFAULT

The commands specified for . DEFAULT are used for any target for which no rules are found (either
explicit rules or implicit rules). See section Defining Last-Resort Default Rules. If . DEFAULT
commands are specified, every file mentioned as a dependency, but not as atarget in arule, will
have these commands executed on its behalf. See section Implicit Rule Search Algorithm.

. PRECI QUS

The targets which . PRECI OUS depends on are given the following special treatment: if make is
killed or interrupted during the execution of their commands, the target is not deleted. See section
Interrupting or Killing make. Also, if the target is an intermediate file, it will not be deleted after it

Isno longer needed, asisnormally done. See section Chains of Implicit Rules. You can aso list the
target pattern of an implicit rule (such as "%.0") as a dependency file of the special target

. PRECI OUS to preserve intermediate files created by rules whose target patterns match that file's
name.

. | GNORE

If you specify dependenciesfor . | GNORE, then make will ignore errorsin execution of the
commands run for those particular files. The commands for . | GNORE are not meaningful. If
mentioned as atarget with no dependencies, . | GNORE saysto ignore errors in execution of
commands for all files. This usage of ".IGNORE' is supported only for historical compatibility.
Since this affects every command in the makefile, it is not very useful; we recommend you use the

more selective ways to ignore errors in specific commands. See section Errors in Commands.

. SI LENT

If you specify dependenciesfor . SI LENT, then make will not the print commands to remake those
particular files before executing them. The commandsfor . SI LENT are not meaningful. If
mentioned as atarget with no dependencies, . SI LENT says not to print any commands before
executing them. Thisusage of ".SILENT' is supported only for historical compatibility. We
recommend you use the more selective ways to silence specific commands. See section Command
Echoing. If you want to silence all commands for a particular run of make, usethe "-s or "--silent'

option (see section Summary of Options).
. EXPORT_ALL_VARI ABLES

Simply by being mentioned as atarget, thistells mak e to export all variables to child processes by
default. See section Communicating Variablesto a Sub-nake.

Any defined implicit rule suffix also counts as a special target if it appears as atarget, and so does the
concatenation of two suffixes, such as ".c.0". These targets are suffix rules, an obsolete way of defining
implicit rules (but away still widely used). In principle, any target name could be special in thisway if
you break it in two and add both pieces to the suffix list. In practice, suffixes normally begin with ".', so
these special target names also begin with ".". See section Old-Fashioned Suffix Rules.

Multiple Targets in a Rule

A rule with multiple targets is equivalent to writing many rules, each with one target, and all identical
aside from that. The same commands apply to al the targets, but their effects may vary because you can
substitute the actual target name into the command using "$@'. The rule contributes the same
dependenciesto al the targets also.

Thisisuseful in two cases.
« You want just dependencies, no commands. For example:

kbd.o command. o files.o: conmand. h
gives an additional dependency to each of the three object files mentioned.

« Similar commands work for all the targets. The commands do not need to be absolutely identical,
since the automatic variable "$@' can be used to substitute the particular target to be remade into the
commands (see section Automatic Variables). For example:

bi goutput littleoutput : text.g
generate text.g -$(subst output,,$@ > $@

isequivalent to

bi goutput : text.g
generate text.g -big > bigout put
littl eoutput : text.g
generate text.g -little > littl eout put

Here we assume the hypothetical program gener at e makes two types of output, oneif given
“-big' and oneif given “-little’. See section Functions for String Substitution and Analysis, for an

explanation of the subst function.

Suppose you would like to vary the dependencies according to the target, much as the variable "$@'
allows you to vary the commands. Y ou cannot do this with multiple targets in an ordinary rule, but you
can do it with a static pattern rule. See section Static Pattern Rules.

Multiple Rules for One Target

Onefile can be the target of several rules. All the dependencies mentioned in all the rules are merged into
one list of dependenciesfor the target. If the target is older than any dependency from any rule, the
commands are executed.

There can only be one set of commands to be executed for afile. If more than one rule gives commands
for the samefile, make usesthe last set given and prints an error message. (As a special case, if thefile's
name begins with a dot, no error message is printed. This odd behavior is only for compatibility with other
implementations of make.) Thereis no reason to write your makefiles this way; that iswhy make gives
yOu an error message.

An extrarule with just dependencies can be used to give afew extra dependencies to many files at once.
For example, one usually has a variable named obj ect s containing alist of all the compiler output files
In the system being made. An easy way to say that all of them must be recompiled if “ confi g. h'
changesis to write the following:

objects = foo.0 bar.o
foo.o0 : defs.h

bar.o : defs.h test.h
$(objects) : config.h

This could be inserted or taken out without changing the rules that really specify how to make the object
files, making it a convenient form to use if you wish to add the additional dependency intermittently.

Another wrinkleis that the additional dependencies could be specified with a variable that you set with a
command argument to mak e (see section Overriding Variables). For example,

extradeps=
$(objects) : $(extradeps)

means that the command "make extradeps=foo.h' will consider " f 00. h' as adependency of each object
file, but plain "'make' will not.

If none of the explicit rules for atarget has commands, then make searches for an applicable implicit rule
to find some commands see section Using Implicit Rules).

Static Pattern Rules

Satic pattern rules are rules which specify multiple targets and construct the dependency names for each
target based on the target name. They are more general than ordinary rules with multiple targets because
the targets do not have to have identical dependencies. Their dependencies must be analogous, but not
necessarily identical.

Syntax of Static Pattern Rules

Hereisthe syntax of a static pattern rule:

targets ...: target-pattern: dep-patterns ...
commands

Thetargets list specifies the targets that the rule applies to. The targets can contain wildcard characters,
just like the targets of ordinary rules (see section Using Wildcard Charactersin File Names).

The target-pattern and dep-patterns say how to compute the dependencies of each target. Each target is
matched against the target-pattern to extract a part of the target name, called the stem. Thisstem is
substituted into each of the dep-patterns to make the dependency names (one from each dep-pattern).

Each pattern normally contains the character "%’ just once. When the target-pattern matches a target, the
%' can match any part of the target name; this part is called the stem. The rest of the pattern must match
exactly. For example, thetarget " f 00. o' matches the pattern "%.0', with "foo' as the stem. The targets
"foo.c' and foo.out' donot match that pattern.

The dependency names for each target are made by substituting the stem for the "%' in each dependency
pattern. For example, if one dependency patternis™ % c' , then substitution of the stem “foo' givesthe
dependency name " f 00. ¢' . It islegitimate to write a dependency pattern that does not contain "%'; then
this dependency isthe samefor all targets.

%' charactersin pattern rules can be quoted with preceding backslashes ('\"). Backslashes that would
otherwise quote "%’ characters can be quoted with more backslashes. Backslashes that quote %'
characters or other backslashes are removed from the pattern before it is compared to file names or has a
stem substituted into it. Backslashes that are not in danger of quoting "%' characters go unmolested. For
example, the pattern " t he\ %wei rd\ \ %pat t er n\\ ' has theYoweird\' preceding the operative "%’
character, and “pattern\\' following it. The final two backslashes are | eft alone because they cannot affect
any "%’ character.

Here is an example, which compileseach of * f 00. 0' and " bar . o' from the corresponding " . ¢' file:
objects = foo.0 bar.o

$(objects): %o: %c
$(CO -c $(CFLAGS) $< -0 $@

Here "$<' is the automatic variable that holds the name of the dependency and "$@' is the automatic
variable that holds the name of the target; see section Automatic Variables.

Each target specified must match the target pattern; awarning isissued for each target that does not. If you
have alist of files, only some of which will match the pattern, you can usethef i | t er function to
remove nonmatching file names (see section Functions for String Substitution and Analysis):

files = foo.elc bar.o | ose.o

$(filter %o,$(files)): %o %c
$(CC) -c $(CFLAGS) $< -0 3@

$(filter %elc,$(files)): %elc: %el
emacs -f batch-byte-conpile $<

In this example the result of “$(filter %.0,$(files))' is” bar. o | ose. o', and thefirst static pattern rule
causes each of these object filesto be updated by compiling the corresponding C source file. The result of
“$(filter %.elc,$(files))' is™ f 0o. el ¢' , sothat fileismadefrom ™ f 0o. el ' .

Another example shows how to use $* in static pattern rules:

bi goutput littleoutput : %utput : text.g
generate text.g -$* > $@

When the gener at e command isrun, $* will expand to the stem, either "big' or little'.

Static Pattern Rules versus Implicit Rules

A static pattern rule has much in common with an implicit rule defined as a pattern rule (see section
Defining and Redefining Pattern Rules). Both have a pattern for the target and patterns for constructing

the names of dependencies. The differenceisin how make decides when the rule applies.

Animplicit rule can apply to any target that matches its pattern, but it does apply only when the target has
no commands otherwise specified, and only when the dependencies can be found. If more than one
implicit rule appears applicable, only one applies; the choice depends on the order of rules.

By contrast, a static pattern rule applies to the precise list of targets that you specify in the rule. It cannot
apply to any other target and it invariably does apply to each of the targets specified. If two conflicting
rules apply, and both have commands, that's an error.

The static pattern rule can be better than an implicit rule for these reasons:

« You may wish to override the usual implicit rule for afew files whose names cannot be categorized
syntactically but can be given in an explicit list.

« If you cannot be sure of the precise contents of the directories you are using, you may not be sure
which other irrelevant files might lead mak e to use the wrong implicit rule. The choice might
depend on the order in which the implicit rule search is done. With static pattern rules, thereis no
uncertainty: each rule applies to precisely the targets specified.

Double-Colon Rules

Double-colon rules are rules written with "::" instead of "' after the target names. They are handled
differently from ordinary rules when the same target appears in more than one rule.

When atarget appearsin multiple rules, all the rules must be the same type: al ordinary, or all
double-colon. If they are double-colon, each of them is independent of the others. Each double-colon
rule's commands are executed if the target is older than any dependencies of that rule. This can result in
executing none, any, or al of the double-colon rules.

Double-colon rules with the same target are in fact completely separate from one another. Each
double-colon ruleis processed individually, just as rules with different targets are processed.

The double-colon rules for atarget are executed in the order they appear in the makefile. However, the
cases where double-colon rules really make sense are those where the order of executing the commands
would not matter.

Double-colon rules are somewhat obscure and not often very useful; they provide a mechanism for cases
in which the method used to update a target differs depending on which dependency files caused the
update, and such cases are rare.

Each double-colon rule should specify commands; if it does not, an implicit rule will be used if one
applies. See section Using Implicit Rules.

Generating Dependencies Automatically

In the makefile for a program, many of the rules you need to write often say only that some object file
depends on some header file. For example, if “ mai n. ¢' uses def s. h' viaan#i ncl ude, you would
write:

mai n. o: defs.h

Y ou need thisrule so that make knowsthat it must remake " mai n. o' whenever “ def s. h' changes.
Y ou can see that for alarge program you would have to write dozens of such rulesin your makefile. And,
you must always be very careful to update the makefile every time you add or remove an #i ncl ude.

To avoid this hassle, most modern C compilers can write these rules for you, by looking at the #i ncl ude
linesin the source files. Usually thisis done with the "-M" option to the compiler. For example, the
command:

cc -Mmain.c

generates the output:

main.o : nmain.c defs.h

Thus you no longer have to write all those rules yourself. The compiler will do it for you.

Note that such a dependency constitutes mentioning * nmai n. o' inamakefile, so it can never be
considered an intermediate file by implicit rule search. This means that make won't ever remove thefile
after using it; see section Chains of Implicit Rules.

With old make programs, it was traditional practice to use this compiler feature to generate dependencies
on demand with a command like "make depend'. That command would create afile” depend’
containing all the automatically-generated dependencies; then the makefile could usei ncl ude to read
them in (see section Including Other M akefiles).

In GNU make, the feature of remaking makefiles makes this practice obsolete--you need never tell make
explicitly to regenerate the dependencies, because it always regenerates any makefile that is out of date.
See section How Makefiles Are Remade.

The practice we recommend for automatic dependency generation isto have one makefile corresponding
to each source file. For each sourcefile " nanme. ¢' thereisamakefile name. d' which listswhat files
the object file " nane. o' depends on. That way only the source files that have changed need to be
rescanned to produce the new dependencies.

Hereis the pattern rule to generate afile of dependencies (i.e., amakefile) called " nanme. d' fromaC
sourcefilecaled " nane. ¢’ :

%d: %c
$(SHELL) -ec '$(CC) -M $(CPPFLAGS) $< \
| sed '\'"s/$*\\.o] :]*/& $@g'\'' > $@

See section Defining and Redefining Pattern Rules, for information on defining pattern rules. The "-€' flag
to the shell makesit exit immediately if the $(CC) command fails (exits with a nonzero status). Normally
the shell exits with the status of the last command in the pipeline (sed in this case), so make would not
notice a nonzero status from the compiler.

With the GNU C compiler, you may wish to use the -MM' flag instead of -M'. This omits dependencies
on system header files. See section "Options Controlling the Preprocessor’ in Using GNU CC, for details.

The purpose of the sed command is to trandate (for example):

main.o : nmain.c defs.h

into:

main.o main.d : main.c defs.h

This makes each ".d' file depend on all the source and header files that the corresponding ".o' file depends
on. make then knows it must regenerate the dependencies whenever any of the source or header files
changes.

Once you've defined the rule to remake the ".d' files, you then usethei ncl ude directive to read them all
in. See section Including Other M akefiles. For example:

sources = foo.c bar.c

i ncl ude $(sources:.c=.d)

(This example uses a substitution variable reference to trandate the list of source files foo.c bar.c' into a
list of dependency makefiles, "foo.d bar.d'. See section Substitution References, for full information on
substitution references.) Since the ".d' files are makefiles like any others, nake will remake them as
necessary with no further work from you. See section How Makefiles Are Remade.

Writing the Commands in Rules

The commands of arule consist of shell command lines to be executed one by one. Each command line
must start with atab, except that the first command line may be attached to the target-and-dependencies
line with a semicolon in between. Blank lines and lines of just comments may appear among the command
lines; they are ignored. (But beware, an apparently "blank™ line that begins with atab isnot blank! Itisan
empty command; see section Using Empty Commands.)

Users use many different shell programs, but commands in makefiles are always interpreted by
"/ bi n/ sh' unless the makefile specifies otherwise. See section Command Execution.

The shell that isin use determines whether comments can be written on command lines, and what syntax
they use. Whentheshell is” / bi n/ sh' |, a '# starts a comment that extends to the end of theline. The '#
does not have to be at the beginning of aline. Text on aline before a '# is not part of the comment.

Command Echoing

Normally make prints each command line before it is executed. We call this echoing because it gives the
appearance that you are typing the commands yourself.

When aline starts with *@', the echoing of that line is suppressed. The " @' is discarded before the
command is passed to the shell. Typically you would use this for acommand whose only effect isto print
something, such as an echo command to indicate progress through the makefile:

@cho About to make distribution files

When nake isgiven theflag -n' or "--just-print', echoing is all that happens, no execution. See section
Summary of Options. In this case and only this case, even the commands starting with ~@" are printed.
Thisflag is useful for finding out which commands make thinks are necessary without actually doing
them.

The "-s or "--silent' flag to mak e prevents all echoing, asif al commands started with " @'. A rulein the
makefile for the special target . SI LENT without dependencies has the same effect (see section Special

Built-in Target Names). . SI LENT is essentially obsolete since " @' is more flexible.

Command Execution

When it istime to execute commands to update a target, they are executed by making a new subshell for
each line. (In practice, make may take shortcuts that do not affect the results.)

Please note: thisimplies that shell commands such as cd that set variables|local to each process will not
affect the following command lines. If you want to use cd to affect the next command, put the two on a
single line with a semicolon between them. Then make will consider them a single command and pass
them, together, to a shell which will execute them in sequence. For example:

foo : bar/lose
cd bar; gobble lose > ../foo

If you would like to split asingle shell command into multiple lines of text, you must use a backslash at
the end of all but the last subline. Such a sequence of linesis combined into asingle line, by deleting the
backsl ash-newline sequences, before passing it to the shell. Thus, the following is equivalent to the
preceding example:

foo : bar/l ose
cd bar; \
gobble lose > ../foo

The program used as the shell istaken from the variable SHELL. By default, the program " / bi n/ sh' is
used.

Unlike most variables, the variable SHELL is never set from the environment. Thisis because the SHELL
environment variable is used to specify your personal choice of shell program for interactive use. It would
be very bad for personal choices like thisto affect the functioning of makefiles. See section Variables

from the Environment.

Parallel Execution

GNU make knows how to execute several commands at once. Normally, make will execute only one
command at atime, waiting for it to finish before executing the next. However, the "-j' or "--jobs’ option
tellsmak e to execute many commands simultaneously.

If the "-j" option isfollowed by an integer, thisis the number of commands to execute at once; thisis
called the number of job slots. If there is nothing looking like an integer after the "-j' option, thereis no
limit on the number of job slots. The default number of job slots is one, which means serial execution (one
thing at atime).

One unpleasant consequence of running several commands simultaneoudly is that output from all of the
commands comes when the commands send it, so messages from different commands may be
interspersed.

Another problem is that two processes cannot both take input from the same device; so to make sure that
only one command tries to take input from the terminal at once, make will invalidate the standard input

streams of all but one running command. This means that attempting to read from standard input will
usually be afatal error (a Broken pipe signal) for most child processesif there are several.

It is unpredictable which command will have avalid standard input stream (which will come from the
terminal, or wherever you redirect the standard input of make). The first command run will always get it
first, and the first command started after that one finishes will get it next, and so on.

We will change how this aspect of make worksif we find a better alternative. In the mean time, you
should not rely on any command using standard input at all if you are using the parallel execution feature;
but if you are not using this feature, then standard input works normally in al commands.

If acommand fails (iskilled by asignal or exits with a nonzero status), and errors are not ignored for that
command (see section Errors in Commands), the remaining command lines to remake the same target will

not be run. If acommand fails and the "-k' or "--keep-going' option was not given (see section Summary of
Options), make aborts execution. If make terminates for any reason (including asignal) with child
processes running, it waits for them to finish before actually exiting.

When the system is heavily loaded, you will probably want to run fewer jobs than when it is lightly
loaded. Y ou can use the "-I' option to tell make to limit the number of jobs to run at once, based on the
load average. The "-I' or "--max-load' option is followed by a floating-point number. For example,

-1 2.5

will not let mak e start more than one job if the load average is above 2.5. The "-I' option with no
following number removes the load limit, if one was given with aprevious "-I' option.

More precisely, when make goesto start up ajob, and it already has at least one job running, it checksthe
current load average; if it is not lower than the limit given with *-I', make waits until the load average goes
below that limit, or until all the other jobs finish.

By default, thereisno load limit.

Errors in Commands

After each shell command returns, make looks at its exit status. If the command completed successfully,
the next command line is executed in anew shell; after the last command line isfinished, theruleis
finished.

If thereis an error (the exit status is nonzero), make gives up on the current rule, and perhaps on all rules.

Sometimes the failure of a certain command does not indicate a problem. For example, you may use the
mkdi r command to ensure that a directory exists. If the directory already exists, nkdi r will report an
error, but you probably want make to continue regardless.

To ignore errors in acommand line, write a "-' at the beginning of the line's text (after the initial tab). The
"' is discarded before the command is passed to the shell for execution.

For example,

cl ean:
-rm-f *.0

This causes r mto continue even if it is unable to remove afile.

When you run make with the "-i* or “--ignore-errors flag, errors are ignored in all commands of all rules.
A rulein the makefile for the special target . | GNORE has the same effect, if there are no dependencies.
These ways of ignoring errors are obsolete because "-' is more flexible.

When errors are to be ignored, because of either a'-' or the "-i' flag, make treats an error return just like
success, except that it prints out a message that tells you the status code the command exited with, and
says that the error has been ignored.

When an error happens that mak e has not been told to ignore, it implies that the current target cannot be
correctly remade, and neither can any other that depends on it either directly or indirectly. No further
commands will be executed for these targets, since their preconditions have not been achieved.

Normally make gives up immediately in this circumstance, returning a nonzero status. However, if the
“-k' or "--keep-going' flag is specified, make continues to consider the other dependencies of the pending
targets, remaking them if necessary, before it gives up and returns nonzero status. For example, after an
error in compiling one object file, "'make -k’ will continue compiling other object files even though it
already knows that linking them will be impossible. See section Summary of Options.

The usual behavior assumes that your purpose isto get the specified targets up to date; once neke learns
that thisisimpossible, it might as well report the failure immediately. The "-k' option says that the real
purpose is to test as many of the changes made in the program as possible, perhaps to find several
independent problems so that you can correct them all before the next attempt to compile. Thisiswhy
Emacs conpi | e command passes the -k’ flag by defaullt.

Usually when a command fails, if it has changed the target file at all, the file is corrupted and cannot be
used--or at least it is not completely updated. Y et the file's timestamp says that it is now up to date, so the
next time make runs, it will not try to update that file. The situation is just the same as when the command
iskilled by asignal; see section Interrupting or Killing make. So generally the right thing to do isto
delete the target file if the command fails after beginning to change the file. make will do thisif

. DELETE_ON_ERROR appears as atarget. Thisis almost always what you want make to do, but it is not
historical practice; so for compatibility, you must explicitly request it.

Interrupting or Killing nake

If make getsafatal signal while acommand is executing, it may delete the target file that the command
was supposed to update. Thisis doneif the target file's last-modification time has changed since make
first checked it.

The purpose of deleting the target is to make sure that it is remade from scratch when nake is next run.
Why is this? Suppose you type Ctrl-c while a compiler is running, and it has begun to write an object file
“fo0o0. 0' . The Ctrl-c kills the compiler, resulting in an incomplete file whose last-modification timeis
newer than the sourcefile ™ f 0o. ¢' . But make also receives the Ctrl-c signal and deletes this incomplete
file. If make did not do this, the next invocation of make would think that * f 00. o' did not require

updating--resulting in a strange error message from the linker when it tries to link an object file half of
which is missing.

Y ou can prevent the deletion of atarget file in thisway by making the special target . PRECI OUS depend
on it. Before remaking atarget, make checks to see whether it appears on the dependencies of

. PRECI QUS, and thereby decides whether the target should be deleted if a signal happens. Some reasons
why you might do this are that the target is updated in some atomic fashion, or exists only to record a
modification-time (its contents do not matter), or must exist at all times to prevent other sorts of trouble.

Recursive Use of make

Recursive use of make means using make as acommand in amakefile. This technique is useful when
you want separate makefiles for various subsystems that compose a larger system. For example, suppose
you have a subdirectory ~ subdi r' which hasits own makefile, and you would like the containing
directory's makefile to run make on the subdirectory. Y ou can do it by writing this:

subsystem
cd subdir; $(MAKE)

or, equivalently, this (see section Summary of Options):

subsyst em
$(MAKE) -C subdir

Y ou can write recursive make commands just by copying this example, but there are many things to know
about how they work and why, and about how the sub-make relatesto the top-level make.

How the MAKE Variable Works

Recursive make commands should always use the variable MAKE, not the explicit command name "make’,
as shown here:

subsystem
cd subdir; $(MAKE)

The value of thisvariable is the file name with which mak e was invoked. If thisfile name was
"/ bi n/ make' , then the command executed is “cd subdir; /bin/make'. If you use a special version of
mak e to run the top-level makefile, the same special version will be executed for recursive invocations.

As a special feature, using the variable MAKE in the commands of arule alters the effects of the "-t'
("--touch’), "-n' (--just-print’), or "-g' ("--question’) option. Using the MAKE variable has the same effect as
using a +' character at the beginning of the command line. See section Instead of Executing the
Commands.

Consider the command “make -t' in the above example. (The "-t' option marks targets as up to date without
actually running any commands; see section Instead of Executing the Commands.) Following the usual

definition of "-t', a ‘'make -t' command in the example would create afile named " subsyst eml and do
nothing else. What you really want it to do is run “cd subdir; make -t'; but that would require executing the
command, and "-t' says not to execute commands.

The special feature makes this do what you want: whenever acommand line of arule contains the variable
MAKE, the flags "-t', "-n" and "-q' do not apply to that line. Command lines containing MAKE are executed
normally despite the presence of aflag that causes most commands not to be run. The usual MAKEFLAGS
mechanism passes the flags to the sub-mak e (see section Communicating Options to a Sub-nmake), so

your request to touch the files, or print the commands, is propagated to the subsystem.

Communicating Variables to a Sub-nake

Variable values of the top-level make can be passed to the sub-nake through the environment by explicit
request. These variables are defined in the sub-mak e as defaults, but do not override what is specified in
the makefile used by the sub-mak e makefile unless you use the "-€' switch (see section Summary of

Options).
To pass down, or export, avariable, make adds the variable and its value to the environment for running

each command. The sub-nmake, in turn, uses the environment to initialize its table of variable values. See
section Variables from the Environment.

Except by explicit request, make exports avariable only if it is either defined in the environment initially
or set on the command line, and if its name consists only of letters, numbers, and underscores. Some shells
cannot cope with environment variable names consisting of characters other than letters, numbers, and
underscores.

The special variables SHEL L and MAKEFLAGS are always exported (unless you unexport them).
MAKEFI LES is exported if you set it to anything.

mak e automatically passes down variable values that were defined on the command line, by putting them
in the MAKEFLAGS variable. See the next section.

Variables are not normally passed down if they were created by default by make (see section Variables
Used by Implicit Rules). The sub-make will define these for itself.

If you want to export specific variables to a sub-make, usethe expor t directive, likethis:

export variable ...

If you want to prevent a variable from being exported, use the unexpor t directive, likethis:

unexport variable ...

As a convenience, you can define avariable and export it at the same time by doing:

export variable = val ue

has the same result as:

vari abl e = val ue
export variable

and

export variable := val ue
has the same result as:

vari abl e : = val ue

export variable

Likewise,

export variable += val ue
Isjust like:

vari abl e += val ue
export vari abl e

See section Appending More Text to Variables.

Y ou may notice that the export and unexport directiveswork in make in the same way they work in
the shell, sh.

If you want all variables to be exported by default, you can use expor t by itself:

export

Thistells make that variables which are not explicitly mentioned in anexport or unexport directive
should be exported. Any variable givenin an unexpor t directive will still not be exported. If you use
export by itself to export variables by default, variables whose names contain characters other than
alphanumerics and underscores will not be exported unless specifically mentioned in an expor t
directive.

The behavior elicited by an expor t directive by itself was the default in older versions of GNU nake. If
your makefiles depend on this behavior and you want to be compatible with old versions of nake, you
can write arule for the special target . EXPORT_ALL_VARI ABLES instead of using the expor t
directive. Thiswill be ignored by old makes, while the expor t directive will cause a syntax error.

Likewise, you can useunexport by itself totell make not to export variables by default. Since thisis
the default behavior, you would only need to do thisif expor t had been used by itself earlier (in an
included makefile, perhaps). You cannot use export and unexport by themselvesto have variables
exported for some commands and not for others. Thelast export or unexport directive that appears
by itself determines the behavior for the entire run of make.

As aspecia feature, the variable MAKELEVEL is changed when it is passed down from level to level. This

variable's value is a string which is the depth of the level as a decimal number. The valueis "0 for the
top-level make; "1' for asub-make, "2' for a sub-sub-make, and so on. The incrementation happens when
make sets up the environment for a command.

The main use of MAKELEVEL isto test it in a conditional directive (see section Conditional Parts of
Makefiles); thisway you can write a makefile that behaves one way if run recursively and another way if
run directly by you.

Y ou can use the variable MAKEFI LES to cause all sub-nake commands to use additional makefiles. The
value of MAKEFI LES is awhitespace-separated list of file names. Thisvariable, if defined in the
outer-level makefile, is passed down through the environment; then it serves as alist of extra makefiles for
the sub-mak e to read before the usual or specified ones. See section The Variable MAKEFI LES.

Communicating Options to a Sub-nake

Flags such as "-s and "-k' are passed automatically to the sub-mak e through the variable MAKEFLAGS.
Thisvariableis set up automatically by make to contain the flag letters that make received. Thus, if you
do "make -ks then MAKEFLAGS gets the value ks

As aconsequence, every sub-make getsavaue for MAKEFLAGS in its environment. In response, it takes
the flags from that value and processes them as if they had been given as arguments. See section Summary

of Options.
Likewise variables defined on the command line are passed to the sub-mak e through MAKEFLAGS.

Words in the value of MAKEFLAGS that contain "=', nake treats as variable definitions just asif they
appeared on the command line. See section Overriding Variables.

The options "-C', "-f', -0, and "-W' are not put into MAKEFL AGS; these options are not passed down.

The -} option is a special case (see section Parallel Execution). If you set it to some numeric value, -j 1'

isaways put into MAKEFLAGS instead of the value you specified. Thisis becauseif the "-j' option were
passed down to sub-makes, you would get many more jobs running in parallel than you asked for. If you
give -j" with no numeric argument, meaning to run as many jobs as possible in parallel, thisis passed
down, since multiple infinities are no more than one.

If you do not want to pass the other flags down, you must change the value of MAKEFLAGS, like this:

MAKEFLAGS=
subsystem
cd subdir; $(MAKE)

or likethis:
subsyst em
cd subdir; $(MAKE) MAKEFLAGS=

The command line variable definitions really appear in the variable MAKEOVERRI DES, and MAKEFLAGS
contains areference to this variable. If you do want to pass flags down normally, but don't want to pass

down the command line variable definitions, you can reset MAKEOVERRI DES to empty, like this:

MAKEOVERRI DES =

Thisis not usualy useful to do. However, some systems have a small fixed limit on the size of the
environment, and putting so much information in into the value of MAKEFL AGS can exceed it. If you see
the error message "Arg list too long', this may be the problem. (For strict compliance with POSIX.2,
changing MAKEOVERRI DES does not affect MAKEFLAGS if the special target .POSIX" appearsin the
makefile. Y ou probably do not care about this.)

A similar variable MFLAGS exists also, for historical compatibility. It has the same value as MAKEFLAGS
except that it does not contain the command line variable definitions, and it always begins with a hyphen
unlessit is empty (MAKEFLAGS begins with a hyphen only when it begins with an option that has no
single-letter version, such as "--warn-undefined-variables). MFLAGS was traditionally used explicitly in
the recursive make command, like this:

subsyst em
cd subdir; $(MAKE) $(MFLAGS)

but now MAKEFLAGS makes this usage redundant. If you want your makefiles to be compatible with old
make programs, use this technique; it will work fine with more modern nake versions too.

The MAKEFLAGS variable can also be useful if you want to have certain options, such as -k’ (see section
Summary of Options), set each time you run make. Y ou ssimply put a value for MAKEFLAGS in your
environment. You can also set MAKEFLAGS in a makefile, to specify additional flags that should also be
in effect for that makefile. (Note that you cannot use MFLAGS thisway. That variableis set only for
compatibility; make does not interpret avalue you set for it in any way.)

When make interprets the value of MAKEFLAGS (either from the environment or from a makefile), it first
prepends a hyphen if the value does not already begin with one. Then it chops the value into words
separated by blanks, and parses these words as if they were options given on the command line (except
that "-C, "-f', -h', -0, -W', and their long-named versions are ignored; and there is no error for an invalid
option).

If you do put MAKEFLAGS in your environment, you should be sure not to include any options that will
drastically affect the actions of make and undermine the purpose of makefiles and of make itself. For
instance, the "-t', "-n', and "-q' options, if put in one of these variables, could have disastrous consequences
and would certainly have at least surprising and probably annoying effects.

The "--print-directory' Option
If you use several levels of recursive make invocations, the "-w' or "--print-directory' option can make the
output alot easier to understand by showing each directory as make starts processing it and as make

finishes processing it. For example, if ‘'make -w' isrunin the directory * / u/ gnu/ make' , make will
print aline of the form:

make: Entering directory " /u/gnu/ make'.

before doing anything else, and aline of the form:

make: Leaving directory " /u/gnu/ make'.
when processing is completed.

Normally, you do not need to specify this option because "'make' doesit for you: "-w' is turned on
automatically when you use the *-C' option, and in sub-makes. make will not automatically turn on "-w" if
you also use "-s, which saysto be silent, or if you use "--no-print-directory’ to explicitly disable it.

Defining Canned Command Sequences

When the same sequence of commands is useful in making various targets, you can define it as a canned
sequence with thedef i ne directive, and refer to the canned sequence from the rules for those targets.
The canned sequence is actually a variable, so the name must not conflict with other variable names.

Here is an example of defining a canned sequence of commands:

defi ne run-yacc
yacc $(firstword $7)
mv y.tab.c $@

endef

Herer un- yacc isthe name of the variable being defined; endef marks the end of the definition; the
linesin between are the commands. The def i ne directive does not expand variable references and
function callsin the canned sequence; the $' characters, parentheses, variable names, and so on, all
become part of the value of the variable you are defining. See section Defining Variables Verbatim, for a

complete explanation of def i ne.

The first command in this example runs Y acc on the first dependency of whichever rule uses the canned
sequence. The output file from Yacc isalwaysnamed " y. t ab. ¢' . The second command moves the
output to the rule's target file name.

To use the canned sequence, substitute the variable into the commands of arule. You can substitute it like
any other variable (see section Basics of Variable References). Because variables defined by def i ne are
recursively expanded variables, al the variable references you wrote inside the def i ne are expanded
now. For example:

foo.c : foo.y
$(run-yacc)

“foo.y' will be substituted for the variable “$ when it occursinr un- yacc'svalue, and ‘foo.c' for "$@'.

Thisisaredlistic example, but this particular one is not needed in practice because make has an implicit
rule to figure out these commands based on the file names involved (see section Using Implicit Rules).

In command execution, each line of a canned sequence is treated just as if the line appeared on itsown in
the rule, preceded by atab. In particular, mak e invokes a separate subshell for each line. Y ou can use the

special prefix characters that affect command lines (@', "-', and "+") on each line of a canned sequence.
See section Writing the Commands in Rules. For example, using this canned sequence:

define frobnicate

@cho "frobnicating target $@
frob-step-1 $< -0 $@step-1
frob-step-2 $@step-1 -0 $@
endef

make will not echo thefirst line, the echo command. But it will echo the following two command lines.
On the other hand, prefix characters on the command line that refers to a canned sequence apply to every
line in the sequence. So therule;

frob.out: frob.in

@(frobnicate)

does not echo any commands. (See section Command Echoing, for afull explanation of *@'.)

Using Empty Commands

It is sometimes useful to define commands which do nothing. Thisis done simply by giving acommand
that consists of nothing but whitespace. For example:

target: ;

defines an empty command string for " t ar get ' . You could aso use aline beginning with atab
character to define an empty command string, but this would be confusing because such aline looks
empty.

Y ou may be wondering why you would want to define a command string that does nothing. The only
reason thisis useful isto prevent atarget from getting implicit commands (from implicit rules or the
. DEFAULT special target; see section Using Implicit Rules and see section Defining L ast-Resort Default

Rules).

Y ou may be inclined to define empty command strings for targets that are not actual files, but only exist
so that their dependencies can be remade. However, thisis not the best way to do that, because the
dependencies may not be remade properly if the target file actually does exist. See section Phony Targets,

for a better way to do this.

How to Use Variables

A variable is aname defined in a makefile to represent a string of text, called the variable's value. These
values are substituted by explicit request into targets, dependencies, commands, and other parts of the
makefile. (In some other versions of make, variables are called macros.)

Variables and functionsin al parts of a makefile are expanded when read, except for the shell commands
in rules, the right-hand sides of variable definitions using "=', and the bodies of variable definitions using
thedef i ne directive.

Variables can represent lists of file names, options to pass to compilers, programs to run, directories to
look in for source files, directories to write output in, or anything else you can imagine.

A variable name may be any sequence of characters not containing "', '#, "=, or leading or trailing
whitespace. However, variable names containing characters other than letters, numbers, and underscores
should be avoided, as they may be given special meanings in the future, and with some shells they cannot
be passed through the environment to a sub-mak e (see section Communicating Variables to a Sub-nake).

V ariable names are case-sensitive. The names foo', FOO', and "Foo' al refer to different variables.

It istraditional to use upper case letters in variable names, but we recommend using lower case letters for
variable names that serve internal purposes in the makefile, and reserving upper case for parameters that
control implicit rules or for parameters that the user should override with command options (see section
Overriding Variables).

A few variables have names that are a single punctuation character or just afew characters. These are the
automatic variables, and they have particular specialized uses. See section Automatic Variables.

Basics of Variable References

To substitute a variabl€e's value, write adollar sign followed by the name of the variable in parentheses or
braces:. either "$(foo)' or "${foo}'isavalid reference to the variable f 0o. This special significance of "$' is
why you must write "3' to have the effect of a single dollar sign in a file name or command.

Variable references can be used in any context: targets, dependencies, commands, most directives, and
new variable values. Here is an example of a common case, where a variable holds the names of al the
object filesin a program:

objects = programo foo.0 utils.o
program : $(objects)
cc -0 program $(objects)

$(objects) : defs.h

Variable references work by strict textual substitution. Thus, the rule

foo = ¢
prog.o : prog. $(foo)
$(fo0)$(foo) -$(foo) prog. $(foo)

could be used to compile aC program ™ pr 0g. ¢' . Since spaces before the variable value are ignored in
variable assignments, the value of f 00 isprecisely "¢'. (Don't actually write your makefiles this way!)

A dollar sign followed by a character other than a dollar sign, open-parenthesis or open-brace treats that
single character as the variable name. Thus, you could reference the variable x with "$x'. However, this
practice is strongly discouraged, except in the case of the automatic variables (see section Automatic
Variables).

The Two Flavors of Variables

There are two ways that avariable in GNU make can have avalue; we call them the two flavors of
variables. The two flavors are distinguished in how they are defined and in what they do when expanded.

Thefirst flavor of variableis arecursively expanded variable. Variables of this sort are defined by lines
using ="' (see section Setting Variables) or by the def i ne directive (see section Defining Variables

Verbatim). The value you specify isinstalled verbatim; if it contains references to other variables, these

references are expanded whenever this variable is substituted (in the course of expanding some other
string). When this happens, it is called recursive expansion.

For example,

foo = $(bar)

bar = $(ugh)

ugh = Huh?
all:;echo $(foo)

will echo "Huh?: “$(foo)' expandsto “$(bar)' which expands to “$(ugh)' which finally expandsto "Huh?.
Thisflavor of variable is the only sort supported by other versions of nake. It has its advantages and its
disadvantages. An advantage (most would say) is that:

CFLAGS = $(include_dirs) -0O

i nclude dirs = -1foo -Ibar

will do what was intended: when "CFLAGS is expanded in acommand, it will expand to "-1foo -Ibar -O'.
A magjor disadvantage is that you cannot append something on the end of avariable, asin

CFLAGS = $(CFLAGS) -O

because it will cause an infinite loop in the variable expansion. (Actually make detects the infinite loop
and reports an error.)

Another disadvantage is that any functions (see section Functions for Transforming Text) referenced in the
definition will be executed every time the variable is expanded. This makes make run slower; worse, it
causesthew | dcar d andshel | functionsto give unpredictable results because you cannot easily
control when they are called, or even how many times.

To avoid all the problems and inconveniences of recursively expanded variables, there is another flavor:
simply expanded variables.

Smply expanded variables are defined by linesusing ":=" (see section Setting Variables). The value of a
simply expanded variable is scanned once and for all, expanding any references to other variables and
functions, when the variable is defined. The actual value of the simply expanded variable is the result of
expanding the text that you write. It does not contain any references to other variables; it contains their
values as of the time this variable was defined. Therefore,

x = foo
y 1= $(x) bar
X = later

IS equivalent to

f oo bar
| at er

y .
X .

When asimply expanded variable is referenced, its value is substituted verbatim.

Here is a somewhat more complicated example, illustrating the use of ;=" in conjunction with the shel |
function. (See section The shel | Function.) This example also shows use of the variable MAKELEVEL,

which is changed when it is passed down from level to level. (See section Communicating Variablesto a
Sub-make, for information about MAKEL EVEL .)

i feq (0, ${ MAKELEVEL})

cur-dir = $(shell pwd)
whoami = $(shell whoam)
host-type := $(shell arch)

MAKE : = ${ MAKE} host-type=${host-type} whoan =${whoami }
endi f

An advantage of thisuse of ":="isthat atypical "descend into adirectory’ command then looks like this:

${subdirs}:
${MAKE} cur-dir=${cur-dir}/$@-C $@al |

Simply expanded variables generally make complicated makefile programming more predictable because
they work like variables in most programming languages. They alow you to redefine a variable using its
own value (or its value processed in some way by one of the expansion functions) and to use the
expansion functions much more efficiently (see section Functions for Transforming Text).

Y ou can also use them to introduce controlled leading whitespace into variable values. Leading
whitespace characters are discarded from your input before substitution of variable references and
function calls; this means you can include leading spacesin a variable value by protecting them with
variable references, like this:

nul I string : =
space := $(nullstring) # end of the line

Here the value of the variable space is precisely one space. The comment "# end of the line' isincluded
here just for clarity. Since trailing space characters are not stripped from variable values, just a space at the
end of the line would have the same effect (but be rather hard to read). If you put whitespace at the end of
avariable value, it isagood ideato put acomment like that at the end of the line to make your intent

clear. Conversaly, if you do not want any whitespace characters at the end of your variable value, you
must remember not to put a random comment on the end of the line after some whitespace, such as this:

dir := /fool bar # directory to put the frobs in
Here the value of the variable di r is /foo/bar ' (with four trailing spaces), which was probably not the

intention. (Imagine something like “$(dir)/file' with this definition!)

Advanced Features for Reference to Variables

This section describes some advanced features you can use to reference variables in more flexible ways.

Substitution References

A substitution reference substitutes the value of a variable with alterations that you specify. It has the form
“$(var:a=b)' (or "H var:a=b}") and its meaning is to take the value of the variable var, replace every aat the
end of aword with b in that value, and substitute the resulting string.

When we say "at the end of aword", we mean that a must appear either followed by whitespace or at the
end of the value in order to be replaced; other occurrences of ain the value are unaltered. For example:
foo := a.o b.oc.o

bar := $(foo:.0=c)

sets "bar' to "a.c b.c c.c'. See section Setting Variables.

A substitution reference is actually an abbreviation for use of the pat subst expansion function (see
section Functions for String Substitution and Analysis). We provide substitution references as well as

pat subst for compatibility with other implementations of nake.

Another type of substitution reference lets you use the full power of the pat subst function. It hasthe
same form “$(var:a=b)' described above, except that now a must contain asingle "%’ character. This case
is equivalent to “$(patsubst a,b,$(var))'. See section Functions for String Substitution and Analysis, for a

description of the pat subst function.

For exanpl e:

a.o b.o c.o
$(fo0: % 0=% c)

foo :
bar

sets ‘bar' to ‘acb.cc.c'.

Computed Variable Names

Computed variable names are a complicated concept needed only for sophisticated makefile
programming. For most purposes you need not consider them, except to know that making a variable with
adollar sign in its name might have strange results. However, if you are the type that wants to understand
everything, or you are actually interested in what they do, read on.

Variables may be referenced inside the name of avariable. Thisis called a computed variable name or a
nested variable reference. For example,

y
y4
= $(B(x))

definesa as "Z': the "$(x)" inside "$($(x))' expandsto "Y', so "$($(x))' expands to "$(y)' whichin turn
expandsto "z'. Here the name of the variable to reference is not stated explicitly; it is computed by
expansion of "$(x)". The reference "$(x)' here is nested within the outer variable reference.

X
y
a

The previous example shows two levels of nesting, but any number of levelsis possible. For example,
here are three levels:

y
z

u
= 3(3(3(x)))

Here the innermost “$(x)' expandsto y', so "$($(x))" expands to "$(y)" which in turn expands to “z'; now
we have "$(z)', which becomes "u'.

X
y
y
a

References to recursively-expanded variables within a variable name are reexpanded in the usual fashion.
For example:

X = $(y)

y =z

zZ = Hello

a .= $(3%(x))

definesa as "Hello": "$($(x))' becomes “$($(y))' which becomes "$(z)' which becomes "Hello'.

Nested variable references can also contain modified references and function invocations (see section

Functions for Transforming Text), just like any other reference. For example, using the subst function
(see section Functions for String Substitution and Analysis):

X = vari abl el
ariable2 := Hello

y = $(subst 1,2, %(x))

Z =

a = $($($(Z)))

eventually definesa as "Hello'. It is doubtful that anyone would ever want to write a nested reference as
convoluted as this one, but it works: “$($($(z)))" expands to “$($(y))' which becomes “$($(subst 1,2,$(x)))".
This gets the value "variablel' from x and changes it by substitution to "variable2', so that the entire string
becomes “$(variable?)', a simple variable reference whose valueis "Hello'.

A computed variable name need not consist entirely of asingle variable reference. It can contain several
variable references, as well as some invariant text. For example,

adirs :=diradirb

1 dirs :=dirl dir2

a files :=filea fileb
1 files :=filel file2
ifeq "$(use_a)" "yes"
al := a

el se

al :=1

endi f

ifeq "$(use_dirs)" "yes"
df :=dirs

el se

df :=files

endi f

dirs := $($(al)_$(df))

will givedi r s thesamevalueasa _dirs,1 dirs,a filesorl fil es depending on the settings
of use_aanduse dirs.

Computed variable names can also be used in substitution references:

a_objects :
1 objects :

= a.o b.o c.
= 1.0 2.0 3.

sources : = $($(al) objects:.o=.c)

definessour ces aseither ‘acb.cc.c'or "1.c 2.c 3.c', depending on the value of al.

The only restriction on this sort of use of nested variable referencesis that they cannot specify part of the
name of afunction to be called. Thisis because the test for a recognized function name is done before the
expansion of nested references. For example,

| fdef do_sort

func : = sort

el se

func := strip

endi f

bar :=adbgqgc

foo := $($(func) $(bar))

attemptsto give foo' the value of the variable "sortadb gqc' or ‘stripadbgqc, rather than giving "'ad
b g q ¢ asthe argument to either thesor t or thest ri p function. Thisrestriction could be removed in
the future if that change is shown to be agood idea.

Y ou can aso use computed variable namesin the left-hand side of avariable assignment, or inadef i ne
directive, asin:

dir = foo

$(dir)_sources := $(wildcard $(dir)/*.c)
define $(dir)_print

| pr $($(dir)_sources)

endef

This example defines the variables “dir', ‘foo_sources, and ‘foo_print'.

Note that nested variable references are quite different from recursively expanded variables (see section
The Two Flavors of Variables), though both are used together in complex ways when doing makefile

programming.

How Variables Get Their Values

Variables can get valuesin severa different ways.
« You can specify an overriding value when you run make. See section Overriding Variables.

« You can specify avalue in the makefile, either with an assignment (see section Setting Variables) or
with a verbatim definition (see section Defining Variables Verbatim).

« Variablesin the environment become nak e variables. See section Variables from the Environment.

« Several automatic variables are given new values for each rule. Each of these hasasingle
conventional use. See section Automatic Variables.

o Several variables have constant initial values. See section Variables Used by Implicit Rules.

Setting Variables

To set avariable from the makefile, write aline starting with the variable name followed by =" or ":=".
Whatever follows the "=' or ":=' on the line becomes the value. For example,

objects = main.o foo.o bar.o utils.o

defines a variable named obj ect s. Whitespace around the variable name and immediately after the '='is
ignored.

Variables defined with "=" are recursively expanded variables. Variables defined with ":=" are simply
expanded variables; these definitions can contain variable references which will be expanded before the
definition is made. See section The Two Flavors of Variables.

The variable name may contain function and variable references, which are expanded when the lineisread
to find the actual variable nameto use.

Thereisno limit on the length of the value of a variable except the amount of swapping space on the
computer. When a variable definition islong, it isagood ideato break it into several lines by inserting
backslash-newline at convenient places in the definition. Thiswill not affect the functioning of make, but
it will make the makefile easier to read.

Most variable names are considered to have the empty string as avalue if you have never set them.
Several variables have built-in initial values that are not empty, but you can set them in the usual ways
(see section Variables Used by Implicit Rules). Several special variables are set automatically to a new

value for each rule; these are called the automatic variables (see section Automatic Variables).

Appending More Text to Variables

Often it is useful to add more text to the value of a variable already defined. Y ou do thiswith aline
containing "+=', like this:

obj ects += another.o

Thistakes the value of the variable obj ect s, and adds the text “another.o' to it (preceded by a single
space). Thus:

objects = main.o foo.o bar.o utils.o

obj ects += anot her.o

setsobj ect s to ‘main.o f00.0 bar.o utils.o another.o'.

Using +="issimilar to:

objects = main.o foo.o bar.o utils.o

obj ects := $(objects) another.o
but differsin ways that become important when you use more complex values.

When the variable in question has not been defined before, "+=" actsjust like normal "=". it defines a
recursively-expanded variable. However, when there is a previous definition, exactly what “+=" does
depends on what flavor of variable you defined originally. See section The Two Flavors of Variables, for

an explanation of the two flavors of variables.

When you add to avariable's value with "+=', make acts essentially asif you had included the extratext in
theinitial definition of the variable. If you defined it first with ":=', making it a simply-expanded variable,
“+='" adds to that simply-expanded definition, and expands the new text before appending it to the old

value just as ":=' does (see section Setting Variables, for afull explanation of ":="). In fact,

vari abl e : = val ue
vari abl e += nore

Is exactly equivalent to:

val ue
$(variable) nore

vari abl e :
vari abl e :

On the other hand, when you use "+=' with avariable that you defined first to be recursively-expanded
using plain "=', make does something a bit different. Recall that when you define a recursively-expanded
variable, make does not expand the value you set for variable and function references immediately.
Instead it stores the text verbatim, and saves these variable and function references to be expanded later,
when you refer to the new variable (see section The Two Flavors of Variables). When you use "+="'on a

recursively-expanded variable, it is this unexpanded text to which mak e appends the new text you specify.

vari abl e = val ue
vari able += nore

is roughly equivalent to:

tenp = val ue

vari able = $(tenp) nore

except that of course it never defines avariable called t enp. The importance of this comes when the

variable's old value contains variable references. Take this common example:

CFLAGS = $(includes) -0

CFLAGS += -pg # enable profiling

Thefirst line defines the CFLAGS variable with areference to another variable, i ncl udes. (CFLAGS is
used by the rules for C compilation; see section Catalogue of Implicit Rules.) Using "=' for the definition

makes CFLAGS arecursively-expanded variable, meaning “$(includes) -O' is not expanded when nake

processes the definition of CFLAGS. Thus, i ncl udes need not be defined yet for its value to take effect.
It only has to be defined before any reference to CFLAGS. If we tried to append to the value of CFLAGS
without using “+=', we might do it like this:

CFLAGS : = $(CFLAGS) -pg # enable profiling

Thisis pretty close, but not quite what we want. Using ":=' redefines CFLAGS as a simply-expanded
variable; thismeans mak e expands the text "$(CFLAGS) -pg’ before setting the variable. If i ncl udes is
not yet defined, we get * -O -pg’, and alater definition of i ncl udes will have no effect. Conversely, by
using "+="we set CFLAGS to the unexpanded value "$(includes) -O -pg'. Thus we preserve the reference
toi ncl udes, soif that variable gets defined at any later point, areference like "$(CFLAGS)' still usesits
value.

The overri de Directive

If avariable has been set with a command argument (see section Overriding Variables), then ordinary

assignments in the makefile are ignored. If you want to set the variable in the makefile even though it was
set with a command argument, you can useanover r i de directive, which isaline that looks like this:

override vari able = val ue

or

override vari able : = val ue

To append more text to a variable defined on the command line, use:

override variable += nore text

See section Appending More Text to Variables.

Theover ri de directive was not invented for escalation in the war between makefiles and command
arguments. It was invented so you can alter and add to values that the user specifies with command
arguments.

For example, suppose you aways want the "-g' switch when you run the C compiler, but you would like to
allow the user to specify the other switches with a command argument just as usual. Y ou could use this
overri de directive:

override CFLAGS += -g
Youcanasouseoverri de directiveswith def i ne directives. Thisis done as you might expect:
override define foo

bar
endef

See the next section for information about def | ne.

Defining Variables Verbatim

Another way to set the value of avariableisto usethedef i ne directive. This directive has an unusual
syntax which allows newline characters to be included in the value, which is convenient for defining
canned sequences of commands (see section Defining Canned Command Sequences).

Thedef i ne directive isfollowed on the same line by the name of the variable and nothing more. The
value to give the variable appears on the following lines. The end of the value is marked by aline
containing just the word endef . Aside from this difference in syntax, def i ne worksjust like "=": it
creates arecursively-expanded variable (see section The Two Flavors of Variables). The variable name

may contain function and variable references, which are expanded when the directive is read to find the
actual variable name to use.

define two-1ines
echo foo

echo $(bar)
endef

The value in an ordinary assignment cannot contain a newline; but the newlines that separate the lines of
thevaluein adef i ne become part of the variable's value (except for the final newline which precedes
the endef andisnot considered part of the value).

The previous example is functionally equivalent to this:

two-1ines = echo foo; echo $(bar)

since two commands separated by semicolon behave much like two separate shell commands. However,
note that using two separate lines means mak e will invoke the shell twice, running an independent
subshell for each line. See section Command Execution.

If you want variable definitions made with def i ne to take precedence over command-line variable
definitions, you can usetheover ri de directive together with def i ne:

override define two-I|ines
f oo

$(bar)

endef

See section Theover ri de Directive.

Variables from the Environment

Variablesin make can come from the environment in which make isrun. Every environment variable
that make seeswhen it starts up istransformed into a mak e variable with the same name and value. But
an explicit assignment in the makefile, or with a command argument, overrides the environment. (If the
“-€ flag is specified, then values from the environment override assignments in the makefile. See section
Summary of Options. But thisis not recommended practice.)

Thus, by setting the variable CFLAGS in your environment, you can cause all C compilations in most
makefiles to use the compiler switches you prefer. Thisis safe for variables with standard or conventional
meanings because you know that no makefile will use them for other things. (But thisis not totally
reliable; some makefiles set CFLAGS explicitly and therefore are not affected by the value in the
environment.)

When make isinvoked recursively, variables defined in the outer invocation can be passed to inner
Invocations through the environment (see section Recursive Use of make). By default, only variables that
came from the environment or the command line are passed to recursive invocations. Y ou can use the
export directive to pass other variables. See section Communicating Variables to a Sub-neke, for full
details.

Other use of variables from the environment is not recommended. It is not wise for makefiles to depend
for their functioning on environment variables set up outside their control, since this would cause different
users to get different results from the same makefile. Thisis against the whole purpose of most makefiles.

Such problems would be especially likely with the variable SHELL, which is normally present in the
environment to specify the user's choice of interactive shell. It would be very undesirable for this choice to
affect make. So make ignores the environment value of SHELL.

Conditional Parts of Makefiles

A conditional causes part of a makefile to be obeyed or ignored depending on the values of variables.
Conditionals can compare the value of one variable to another, or the value of a variable to a constant
string. Conditionals control what make actually "sees" in the makefile, so they cannot be used to control
shell commands at the time of execution.

Example of a Conditional

The following example of a conditional tells make to use one set of libraries if the CC variableis "gcc,
and adifferent set of libraries otherwise. It works by controlling which of two command lines will be used
as the command for arule. Theresult isthat "CC=gcc' as an argument to make changes not only which
compiler is used but also which libraries are linked.

libs for_gcc = -1gnu
normal |ibs =

foo: $(objects)
ifeq ($(CO, gcce)

$(CC) -0 foo $(objects) $(libs for_gcc)
el se

$(CO -0 foo $(objects) $(normal |ibs)
endi f

This conditional usesthree directives: onei f eq, oneel se and oneendi f .

Thei f eq directive begins the conditional, and specifies the condition. It contains two arguments,
separated by a comma and surrounded by parentheses. Variable substitution is performed on both
arguments and then they are compared. The lines of the makefile following thei f eq are obeyed if the
two arguments match; otherwise they are ignored.

The el se directive causes the following lines to be obeyed if the previous conditional failed. In the
example above, this means that the second alternative linking command is used whenever the first
aternative is not used. It isoptional to have an el se in aconditional.

Theendi f directive ends the conditional. Every conditional must end with an endi f . Unconditional
makefile text follows.

Asthis exampleillustrates, conditionals work at the textual level: the lines of the conditional are treated as
part of the makefile, or ignored, according to the condition. Thisiswhy the larger syntactic units of the
makefile, such as rules, may cross the beginning or the end of the conditional.

When the variable CC has the value "gcc', the above example has this effect:

foo: $(objects)
$(CC -0 foo $(objects) $(libs for _gcc)

When the variable CC has any other value, the effect isthis:

foo: $(objects)
$(CC) -0 foo $(objects) $(normal _Iibs)

Equivalent results can be obtained in another way by conditionalizing a variable assignment and then
using the variable unconditionally:

libs for_gcc = -1gnu
normal |ibs =

ifeq ($(CO, gcc)

i bs=$(1ibs_for_gcc)
el se

l'i bs=$(normal _|i bs)
endi f

foo: $(objects)
$(CC) -0 foo $(objects) $(libs)

Syntax of Conditionals

The syntax of asimple conditional with no el se isasfollows:

conditional -directive
text-if-true
endi f

The text-if-true may be any lines of text, to be considered as part of the makefile if the condition istrue. If
the condition isfalse, no text is used instead.

The syntax of acomplex conditional is asfollows:

conditional -directive
text-if-true

el se

text-if-fal se

endi f

If the condition is true, text-if-true is used; otherwise, text-if-false is used instead. The text-if-false can be
any number of lines of text.

The syntax of the conditional-directive is the same whether the conditional is simple or complex. There
are four different directives that test different conditions. Here is a table of them:

i feq (argl, arg2)

Ifeq "argl' 'arg2'

| feq "argl" "arg2"

ifeq "argl" 'arg2

ifeq 'argl' "arg2"
Expand all variable referencesin argl and arg2 and compare them. If they are identical, the
text-if-true is effective; otherwise, the text-if-false, if any, is effective. Often you want to test if a
variable has a non-empty value. When the value results from complex expansions of variables and

functions, expansions you would consider empty may actually contain whitespace characters and
thus are not seen as empty. However, you can use the st r i p function (see section Functions for

String Substitution and Analysis) to avoid interpreting whitespace as a non-empty value. For
example:

ifeqg ($(strip $(foo)),)
text-if-enpty
endi f

will evaluate text-if-empty even if the expansion of $(f 00) contains whitespace characters.

I fneq (argl, arg2)

I fneq 'argl' 'arg2'

I fneq "argl" "arg2"

I fneq "argl" 'arg2'

I fneq "argl' "arg2"
Expand all variable referencesin argl and arg2 and compare them. If they are different, the
text-if-true is effective; otherwise, the text-if-false, if any, is effective.

| fdef vari abl e- nane
If the variable variable-name has a non-empty value, the text-if-true is effective; otherwise, the
text-if-false, if any, is effective. Variables that have never been defined have an empty value. Note
thati f def only tests whether avariable has avalue. It does not expand the variable to seeif that

value is nonempty. Consequently, testsusing i f def return true for all definitions except those like
f oo =.Totest for an empty value, usei f eq ($(fo00),). For example,

bar =

foo = $(bar)

i fdef foo
frobozz = yes
el se
frobozz
endi f

sets ‘frobozz' to "yes, while:

no

foo =

i fdef foo
frobozz = yes
el se
frobozz
endi f

sets “frobozz' to "no'.
i f ndef vari abl e- nane

If the variable variable-name has an empty value, the text-if-true is effective; otherwise, the
text-if-false, if any, is effective.

no

Extra spaces are allowed and ignored at the beginning of the conditional directive line, but atab is not
allowed. (If the line begins with atab, it will be considered a command for arule.) Aside from this, extra
spaces or tabs may be inserted with no effect anywhere except within the directive name or within an
argument. A comment starting with “# may appear at the end of the line.

The other two directives that play a part in aconditional areel se and endi f . Each of these directivesis
written as one word, with no arguments. Extra spaces are allowed and ignored at the beginning of the line,
and spaces or tabs at the end. A comment starting with "# may appear at the end of theline.

Conditional s affect which lines of the makefile make uses. If the condition is true, nak e reads the lines of

the text-if-true as part of the makefile; if the condition isfalse, make ignores those lines completely. It
follows that syntactic units of the makefile, such as rules, may safely be split across the beginning or the
end of the conditional.

mak e evaluates conditionals when it reads a makefile. Consequently, you cannot use automatic variables
in the tests of conditionals because they are not defined until commands are run (see section Automatic

Variables).

To prevent intolerable confusion, it is not permitted to start a conditional in one makefile and end it in
another. However, you may writeani ncl ude directive within a conditional, provided you do not
attempt to terminate the conditional inside the included file.

Conditionals that Test Flags

Y ou can write a conditional that tests make command flags such as -t by using the variable MAKEFLAGS
together with thef i ndst ri ng function (see section Functions for String Substitution and Analysis).

Thisisuseful whent ouch is not enough to make afile appear up to date.

Thef i ndst ri ng function determines whether one string appears as a substring of another. If you want
to test for the "-t' flag, use 't' asthefirst string and the value of MAKEFLAGS as the other.

For example, hereis how to arrange to use ranlib -t' to finish marking an archive file up to date:

archive.a: ...

ifneq (,$(findstring t,$(MAKEFLAGS)))
+t ouch archive. a
+ranlib -t archive.a

el se
ranli b archive. a

endi f

The "+ prefix marks those command lines as "recursive” so that they will be executed despite use of the
“-t' flag. See section Recursive Use of make.

Functions for Transforming Text

Functions allow you to do text processing in the makefile to compute the files to operate on or the
commands to use. Y ou use afunction in afunction call, where you give the name of the function and
some text (the arguments) for the function to operate on. The result of the function's processing is
substituted into the makefile at the point of the call, just as a variable might be substituted.

Function Call Syntax

A function call resembles avariable reference. It looks like this:

$(function argunents)

or like this:

${function argunent s}

Here function is a function name; one of a short list of names that are part of make. Thereisno provision
for defining new functions.

The arguments are the arguments of the function. They are separated from the function name by one or
more spaces or tabs, and if there is more than one argument, then they are separated by commas. Such
whitespace and commas are not part of an argument's value. The delimiters which you use to surround the
function call, whether parentheses or braces, can appear in an argument only in matching pairs; the other
kind of delimiters may appear singly. If the arguments themselves contain other function calls or variable
references, it is wisest to use the same kind of delimitersfor al the references; write "$(subst a,b,$(x))’,
not “$(subst a,b,${x})". Thisis becauseit is clearer, and because only one type of delimiter is matched to
find the end of the reference.

The text written for each argument is processed by substitution of variables and function calls to produce
the argument value, which is the text on which the function acts. The substitution is done in the order in
which the arguments appear.

Commas and unmatched parentheses or braces cannot appear in the text of an argument as written; leading
spaces cannot appear in the text of the first argument as written. These characters can be put into the
argument value by variable substitution. First define variables conmma and space whose values are
isolated comma and space characters, then substitute these variables where such characters are wanted,
like this:

comma: =
enpty: =

space: = $(enpty) $(enpty)
foo:=a b c

bar: = $(subst $(space), $(comm), $(f00))
bar is now a,b,c'.

Herethe subst function replaces each space with acomma, through the value of f 00, and substitutes the
result.

Functions for String Substitution and Analysis

Here are some functions that operate on strings:
$(subst fromto,text)

Performs atextual replacement on the text text: each occurrence of from is replaced by to. The
result is substituted for the function call. For example,

$(subst ee, EE, feet on the street)
substitutes the string "fEEt on the StrEEL'.
$(pat subst pattern, repl acenent, text)

Finds whitespace-separated words in text that match pattern and replaces them with replacement.
Here pattern may contain a %' which acts as awildcard, matching any number of any characters
within aword. If replacement also containsa " %', the "%' is replaced by the text that matched the
%' in pattern. %' charactersin pat subst function invocations can be quoted with preceding
backslashes ("\"). Backslashes that would otherwise quote "%' characters can be quoted with more
backslashes. Backsashes that quote "%' characters or other backslashes are removed from the
pattern before it is compared file names or has a stem substituted into it. Backslashes that are not in
danger of quoting %' characters go unmolested. For example, the pattern

“the\ %wei rd\\ %pattern\\"' has the%oweird\' preceding the operative "%' character, and
“pattern\\' following it. The final two backslashes are | eft alone because they cannot affect any "%’
character. Whitespace between words is folded into single space characters; leading and trailing
whitespace is discarded. For example,

$(patsubst %c, % o0, x.c.c bar.c)
produces the value "x.c.o bar.o'. Substitution references (see section Substitution References) are a
simpler way to get the effect of the pat subst function:

$(var: pattern=repl acenent)
isequivalent to

$(pat subst pattern,repl acenent, $(var))

The second shorthand simplifies one of the most common uses of pat subst : replacing the suffix
at the end of file names,

$(var: suffix=repl acenent)
isequivalent to

$(pat subst %suffi x, % epl acenent, $(var))
For example, you might have alist of object files:

objects = foo.0 bar.o baz.o
To get the list of corresponding source files, you could simply write:

$(obj ects:.o0=.c)
instead of using the general form:

$(pat subst % o, % c, $(obj ects))

$(strip string)
Removes leading and trailing whitespace from string and replaces each internal sequence of one or
more whitespace characters with a single space. Thus, "$(strip ab ¢)' resultsin "ab ¢'. The function
st ri p can be very useful when used in conjunction with conditionals. When comparing something
with the empty string " using i f eq or i f neq, you usually want a string of just whitespace to
match the empty string (see section Conditional Parts of Makefiles). Thus, the following may fail to
have the desired results:

. PHONY: al |

ifneq "$(needs_nmde)"
all: $(needs_nmade)

el se

all:; @cho 'Nothing to nake!’
endi f

Replacing the variable reference “$(needs_made)' with the function call “$(strip $(needs made))' in
thei f neq directive would make it more robust.

$(findstring find,in)
Searches in for an occurrence of find. If it occurs, the value is find; otherwise, the value is empty.

Y ou can use this function in a conditional to test for the presence of a specific substring in agiven
string. Thus, the two examples,

$(findstring a,a b ¢)

$(findstring a,b c)

produce the values "a and ™' (the empty string), respectively. See section Conditionals that Test
Flags, for apractical application of fi ndstri ng.

$(filter pattern...,text)

Removes all whitespace-separated words in text that do not match any of the pattern words,
returning only matching words. The patterns are written using "%/, just like the patterns used in the
pat subst function above. Thef i | t er function can be used to separate out different types of
strings (such asfile names) in avariable. For example:

sources := foo.c bar.c baz.s ugh.h
foo: $(sources)
cc $(filter %c %s, $(sources)) -o foo

saysthat " f 00’ dependsof foo.c', bar.c', baz.s' and ugh.h' butonly foo.c',
“bar.c' and baz.s' should be specified in the command to the compiler.

$(filter-out pattern...,text)

Removes all whitespace-separated words in text that do match the pattern words, returning only the
words that do not match. Thisisthe exact opposite of thef i | t er function. For example, given:

obj ects=mainl.o foo.o0 main2.0 bar.o
mai ns=mai n1. 0 nmai n2. 0

the following generates a list which contains all the object filesnot in "'mains’

$(filter-out $(mains), $(objects))
$(sort list)

Sorts the words of list in lexical order, removing duplicate words. The output isalist of words
separated by single spaces. Thus,

$(sort foo bar |ose)

returns the value "bar foo lose. Incidentally, since sor t removes duplicate words, you can use it
for this purpose even if you don't care about the sort order.

Hereisarealistic example of the use of subst and pat subst . Suppose that a makefile uses the VPATH
variable to specify alist of directories that make should search for dependency files (see section VPATH:

Search Path for All Dependencies). This example shows how to tell the C compiler to search for header
filesin the same list of directories.

The value of VPATH s alist of directories separated by colons, such as “src.../headers. First, the subst
function is used to change the colons to spaces:

$(subst :, , $(VPATH))

This produces "src ../headers. Then pat subst isused to turn each directory nameinto a "-I' flag. These
can be added to the value of the variable CFLAGS, which is passed automatically to the C compiler, like
this:

override CFLAGS += $(patsubst %-1% $(subst :, , $(VPATH)))

The effect isto append the text “-1src -I../headers to the previously given value of CFLAGS. The
over ri de directive is used so that the new value is assigned even if the previous value of CFLAGS was
specified with a command argument (see section The over r i de Directive).

Functions for File Names

Several of the built-in expansion functions relate specifically to taking apart file names or lists of file
names.

Each of the following functions performs a specific transformation on afile name. The argument of the
function is regarded as a series of file names, separated by whitespace. (Leading and trailing whitespace is
ignored.) Each file name in the series is transformed in the same way and the results are concatenated with
single spaces between them.

$(dir nanes...)
Extracts the directory-part of each file name in names. The directory-part of the file nameis

everything up through (and including) the last dash init. If the file name contains no slash, the
directory part isthe string "./'. For example,

$(dir src/foo.c hacks)
produces the result “src/ ./'.
$(notdir nanes...)

Extracts all but the directory-part of each file name in names. If the file name contains no slash, it is
left unchanged. Otherwise, everything through the last slash is removed from it. A file name that
ends with a slash becomes an empty string. Thisis unfortunate, because it means that the result does
not always have the same number of whitespace-separated file names as the argument had; but we
do not see any other valid alternative. For example,

$(notdir src/foo.c hacks)
produces the result “foo.c hacks.
$(suffix nanes...)

Extracts the suffix of each file name in names. If the file name contains a period, the suffix is
everything starting with the last period. Otherwise, the suffix is the empty string. This frequently
means that the result will be empty when namesis not, and if names contains multiple file names,
the result may contain fewer file names. For example,

$(suffix src/foo.c hacks)
produces the result ".c'.
$(basenane nanes...)

Extracts al but the suffix of each file name in names. If the file name contains a period, the
basename is everything starting up to (and not including) the last period. Otherwise, the basenameis
the entire file name. For example,

$(basenane src/foo.c hacks)
produces the result “src/foo hacks.
$(addsuffix suffix, nanes...)

The argument names is regarded as a series of names, separated by whitespace; suffix isused asa
unit. The value of suffix is appended to the end of each individual name and the resulting larger
names are concatenated with single spaces between them. For example,

$(addsuffix .c,foo bar)
produces the result “foo.c bar.c'.
$(addprefix prefix, nanes...)

The argument names is regarded as a series of names, separated by whitespace; prefix isused as a
unit. The value of prefix is prepended to the front of each individual name and the resulting larger
names are concatenated with single spaces between them. For example,

$(addprefix src/,foo bar)
produces the result “src/foo src/bar’.

$(join listl, list?2)
Concatenates the two arguments word by word: the two first words (one from each argument)
concatenated form the first word of the result, the two second words form the second word of the
result, and so on. So the nth word of the result comes from the nth word of each argument. If one
argument has more words that the other, the extrawords are copied unchanged into the result. For
example, "$(join ab,.c .0)' produces "a.c b.o". Whitespace between the words in the lists is not

preserved; it is replaced with asingle space. This function can merge the results of thedi r and
not di r functions, to produce the original list of files which was given to those two functions.

$(word n, text)

Returns the nth word of text. The legitimate values of n start from 1. If nis bigger than the number
of wordsin text, the value is empty. For example,

$(word 2, foo bar baz)
returns "bar".
$(words text)

Returns the number of words in text. Thus, the last word of textis$(word $(wor ds
text),text).

$(firstword nanes...)

The argument names is regarded as a series of names, separated by whitespace. The valueisthe first
name in the series. The rest of the names are ignored. For example,

$(firstword foo bar)

produces the result “foo'. Although $(fi rstword text) isthesameas$(word 1,text),
thefi r st wor d function isretained for its ssimplicity.

$(wi | dcard pattern)

The argument pattern is afile name pattern, typically containing wildcard characters (asin shell file
name patterns). Theresult of wi | dcar d isa space-separated list of the names of existing files that
match the pattern. See section Using Wildcard Charactersin File Names.

The f or each Function

Thef or each function is very different from other functions. It causes one piece of text to be used
repeatedly, each time with a different substitution performed on it. It resemblesthe f or command in the
shell sh and thef or each command in the C-shell csh.

The syntax of thef or each functionis:

$(foreach var,|list,text)

Thefirst two arguments, var and list, are expanded before anything else is done; note that the last

argument, text, is not expanded at the same time. Then for each word of the expanded value of list, the
variable named by the expanded value of var is set to that word, and text is expanded. Presumably text
contains references to that variable, so its expansion will be different each time.

Theresult isthat text is expanded as many times as there are whitespace-separated words in list. The
multiple expansions of text are concatenated, with spaces between them, to make the result of f or each.

This simple example sets the variable “files to thelist of all filesin the directoriesin thelist "dirs:

dirs :=abcd
files := $(foreach dir,$(dirs), $(wildcard $(dir)/*))

Heretext is "$(wildcard $(dir)/*)". The first repetition finds the value "a for di r , so it produces the same
result as “$(wildcard a/*)'; the second repetition produces the result of “$(wildcard b/*)'; and the third, that
of “$(wildcard c/*)".

This example has the same result (except for setting "dirs) as the following example:

files := $(wildcard a/* b/* c/* dI*)
When text is complicated, you can improve readability by giving it a name, with an additional variable:

find files = $(wildcard $(dir)/*)
dirs :=abcd
files := $(foreach dir,$(dirs),$(find_files))

Herewe usethevariablef i nd_fi | es thisway. We use plain "=' to define a recursively-expanding
variable, so that its value contains an actual function call to be reexpanded under the control of f or each;
a simply-expanded variable would not do, sincewi | dcar d would be called only once at the time of
definingfind_fil es.

Thef or each function has no permanent effect on the variable var; its value and flavor after the

f or each function call are the same as they were beforehand. The other values which are taken from list
are in effect only temporarily, during the execution of f or each. The variable var is a simply-expanded
variable during the execution of f or each. If var was undefined before the f or each function cal, itis
undefined after the call. See section The Two Flavors of Variables.

Y ou must take care when using complex variable expressions that result in variable names because many
strange things are valid variable names, but are probably not what you intended. For example,
files := $(foreach Esta escrito en espanol!,b ¢ ch,$(find files))

might be useful if thevalueof fi nd_f i | es references the variable whose name is "Esta escrito en
espanol!* (es un nombre bastante largo, no?), but it is more likely to be a mistake.

The ori gi n Function

Theor i gi n function is unlike most other functionsin that it does not operate on the values of variables;
it tells you something about a variable. Specificaly, it tells you where it came from.

The syntax of theor i gi n functionis:

$(origin variable)

Note that variable is the name of a variable to inquire about; not areference to that variable. Therefore you
would not normally usea"$' or parentheses when writing it. (Y ou can, however, use a variable reference
in the name if you want the name not to be a constant.)

The result of thisfunction is astring telling you how the variable variable was defined:

“undefined’
if variable was never defined.

“default’
if variable has a default definition, asis usual with CC and so on. See section Variables Used by
Implicit Rules. Note that if you have redefined a default variable, the or i gi n function will return
the origin of the later definition.

“environment'

if variable was defined as an environment variable and the "-€' option is not turned on (see section
Summary of Options).

“environment override'

if variable was defined as an environment variable and the "-€' option is turned on (see section
Summary of Options).

“file
if variable was defined in a makefile.
“command line
if variable was defined on the command line.
“override
if variable was defined with an over ri de directive in amakefile (see section Theoverri de
Directive).
“automatic'

if variable is an automatic variable defined for the execution of the commands for each rule (see
section Automatic Variables).

Thisinformation is primarily useful (other than for your curiosity) to determine if you want to believe the
value of avariable. For example, suppose you have amakefile " f 00" that includes another makefile
“bar' . Youwant avariablebl et ch to bedefinedin~ bar"' if you run the command "make -f bar’,
even if the environment contains a definition of bl et ch. However, if * f 00" defined bl et ch before
including * bar ' , you do not want to override that definition. This could be done by using anoverri de

directivein” f 0o' , giving that definition precedence over the later definitionin ™ bar ' ; unfortunately,
theover ri de directive would also override any command line definitions. So, ~ bar ' could include:

| fdef bletch

ifeq "$(origin bletch)" "environnent"
bletch = barf, gag, etc.

endi f

endi f

If bl et ch has been defined from the environment, thiswill redefineit.
If you want to override a previous definition of bl et ch if it came from the environment, even under "-€,

you could instead write:

ifneqg "$(findstring environnent, $(origin bletch))"
bletch = barf, gag, etc.
endi f

Here the redefinition takes place if “$(origin bletch)' returns either “environment' or “environment
override'. See section Functions for String Substitution and Analysis.

The shel | Function

Theshel | functionisunlike any other function except thew | dcar d function (see section The
Functionw | dcar d) inthat it communicates with the world outside of nake.

Theshel | function performs the same function that backquotes ("™") perform in most shells: it does
command expansion. This means that it takes an argument that is a shell command and returns the output
of the command. The only processing mak e does on the result, before substituting it into the surrounding
text, isto convert newlines to spaces.

The commands run by callsto theshel | function are run when the function calls are expanded. In most
cases, thisis when the makefileisread in. The exception is that function calls in the commands of the
rules are expanded when the commands are run, and this appliesto shel | function callslike al others.

Here are some examples of the use of theshel | function:

contents := $(shell cat foo)

setscont ent s to the contents of thefile " f oo’ , with a space (rather than a newline) separating each
line.

files := $(shell echo *.c)

setsf i | es totheexpansion of *.c'. Unless nake isusing avery strange shell, this has the same result as
“$(wildcard *.c)".

How to Run nake

A makefile that says how to recompile a program can be used in more than one way. The smplest useisto
recompile every file that is out of date. Usually, makefiles are written so that if you run make with no
arguments, it does just that.

But you might want to update only some of the files; you might want to use a different compiler or
different compiler options; you might want just to find out which files are out of date without changing
them.

By giving arguments when you run make, you can do any of these things and many others.

The exit status of make is aways one of three values:

0
The exit statusis zero if make issuccessful.

2
The exit statusistwo if make encounters any errors. It will print messages describing the particular
errors.

1

The exit statusis one if you use the "-g' flag and mak e determines that some target is not already up
to date. See section Instead of Executing the Commands.

Arguments to Specify the Makefile

The way to specify the name of the makefile iswith the "-f' or "--file' option ("--makefile' a'so works). For
example, "-f altmake saysto usethefile ™ al t make' asthe makefile.

If you use the "-f' flag several times and follow each "-f' with an argument, all the specified files are used
jointly as makefiles.

If you do not use the “-f' or "--file flag, the default isto try - GNUmakefi |l e' , nakefil e', and
“Makefil e',inthat order, and use the first of these three which exists or can be made (see section
Writing Makefiles).

Arguments to Specify the Goals

The goals are the targets that mak e should strive ultimately to update. Other targets are updated as well if
they appear as dependencies of goals, or dependencies of dependencies of goals, etc.

By default, the goal isthe first target in the makefile (not counting targets that start with a period).
Therefore, makefiles are usually written so that the first target is for compiling the entire program or
programs they describe. If the first rule in the makefile has several targets, only the first target in the rule
becomes the default goal, not the whole list.

Y ou can specify adifferent goal or goals with argumentsto make. Use the name of the goal asan
argument. If you specify several goals, make processes each of them in turn, in the order you name them.

Any target in the makefile may be specified as agoal (unlessit startswith "-' or containsan "=, in which
case it will be parsed as a switch or variable definition, respectively). Even targets not in the makefile may
be specified, if make can find implicit rules that say how to make them.

One use of specifying agoal isif you want to compile only a part of the program, or only one of several
programs. Specify asagoal each file that you wish to remake. For example, consider a directory
containing several programs, with amakefile that starts like this:

. PHONY: al |
all: size nmld ar as

If you are working on the program si ze, you might want to say "make size' so that only the files of that
program are recompiled.

Another use of specifying agoal isto make files that are not normally made. For example, there may be a
file of debugging output, or aversion of the program that is compiled specially for testing, which has a
rule in the makefile but is not a dependency of the default goal.

Another use of specifying agoal is to run the commands associated with a phony target (see section Phony
Targets) or empty target (see section Empty Target Files to Record Events). Many makefiles contain a

phony target named * ¢l ean' which deletes everything except source files. Naturally, thisis done only if
you request it explicitly with "'make clean'’. Following isalist of typical phony and empty target names.
See section Standard Targets for Users, for adetailed list of all the standard target names which GNU
software packages use.

Tal !

Make all the top-level targets the makefile knows about.
“cl ean’

Delete al files that are normally created by running make.
“nost | ycl ean’

Like “clean’, but may refrain from deleting afew files that people normally don't want to recompile.
For example, the "'mostlyclean’ target for GCC does not delete " | i bgcc. a' , because recompiling
itisrarely necessary and takes alot of time.

“di stcl ean’
“real cl ean’
“cl obber'

Any of these targets might be defined to delete more files than "clean’ does. For example, thiswould
delete configuration files or links that you would normally create as preparation for compilation,
even if the makefile itself cannot create these files.

“install’

Copy the executable file into a directory that userstypically search for commands; copy any
auxiliary files that the executable uses into the directories where it will look for them.

Tprint’
Print listings of the source files that have changed.
“tar'
Create atar file of the sourcefiles.
“shar’
Create a shell archive (shar file) of the sourcefiles.
“di st
Create a distribution file of the source files. This might be atar file, or ashar file, or acompressed
version of one of the above, or even more than one of the above.
" TAGS
Update atags table for this program.
" check'
“test'
Perform self tests on the program this makefile builds.

Instead of Executing the Commands

The makefile tells make how to tell whether atarget is up to date, and how to update each target. But
updating the targets is not always what you want. Certain options specify other activities for make.
N

“--just-print’
“--dry-run'
“--recon’

"No-op". The activity isto print what commands would be used to make the targets up to date, but
not actually execute them.

Ly
“--touch'

"Touch". The activity isto mark the targets as up to date without actually changing them. In other
words, make pretends to compile the targets but does not really change their contents.

-q
“--guestion'
"Question". The activity isto find out silently whether the targets are up to date already; but execute
no commands in either case. In other words, neither compilation nor output will occur.
W file
“--what-if=file
“--assume-new=fil€
--new-file=file
"What if". Each "-W' flag is followed by afile name. The given files modification times are

recorded by make as being the present time, although the actual modification times remain the
same. Y ou can use the "-W' flag in conjunction with the -n" flag to see what would happen if you
were to modify specific files.

With the "-n' flag, make prints the commands that it would normally execute but does not execute them.

With the "-t' flag, mak e ignores the commands in the rules and uses (in effect) the command t ouch for
each target that needs to be remade. Thet ouch command is also printed, unless *-s or . SI LENT is used.
For speed, make does not actually invoke the program t ouch. It does the work directly.

With the "-q' flag, make prints nothing and executes no commands, but the exit status code it returnsis
zero if and only if the targets to be considered are already up to date. If the exit statusis one, then some
updating needs to be done. If make encounters an error, the exit statusis two, so you can distinguish an
error from atarget that is not up to date.

It is an error to use more than one of these three flags in the same invocation of make.

The -n', -t', and "-g' options do not affect command lines that begin with "+' characters or contain the
strings "$(MAKE)' or "${ MAKE}'. Note that only the line containing the “+' character or the strings
"$(MAKE)' or " ${ MAKE}" isrun regardless of these options. Other lines in the same rule are not run
unless they too begin with "+' or contain "$(MAKE)' or "${ MAKE}"' (See section How the MAKE Variable
Works.)

The "-W' flag provides two features:

« If youalsousethe -n' or "-g flag, you can see what nake would do if you were to modify some
files.

« Without the -n' or "-q' flag, when make is actually executing commands, the “-W' flag can direct
make to act asif some files had been modified, without actually modifying the files.

Note that the options "-p' and "-v' allow you to obtain other information about mak e or about the
makefiles in use (see section Summary of Options).

Avoiding Recompilation of Some Files

Sometimes you may have changed a source file but you do not want to recompile all the files that depend
on it. For example, suppose you add a macro or a declaration to a header file that many other files depend
on. Being conservative, mak e assumes that any change in the header file requires recompilation of all
dependent files, but you know that they do not need to be recompiled and you would rather not waste the
time waiting for them to compile.

If you anticipate the problem before changing the header file, you can use the "-t' flag. Thisflag tells
make not to run the commands in the rules, but rather to mark the target up to date by changing its
last-modification date. Y ou would follow this procedure:

1. Usethe command "make' to recompile the source files that really need recompilation.
2. Make the changes in the header files.

3. Usethe command ‘make -t' to mark all the object files as up to date. The next time you run make,
the changes in the header files will not cause any recompilation.

If you have already changed the header file at atime when some files do need recompilation, it istoo late
to do this. Instead, you can use the "-o fil€' flag, which marks a specified file as "old" (see section
Summary of Options). This means that the file itself will not be remade, and nothing else will be remade
on its account. Follow this procedure:
1. Recompile the source files that need compilation for reasons independent of the particular header
file, with "'make -0 headerfil€'. If several header files are involved, use a separate "-0' option for each
header file.

2. Touch all the object fileswith "'make -t'.

Overriding Variables

An argument that contains "=' specifies the value of avariable: "v=x' sets the value of the variable v to x. If
you specify avaluein thisway, all ordinary assignments of the same variable in the makefile are ignored;
we say they have been overridden by the command line argument.

The most common way to use this facility isto pass extraflags to compilers. For example, in a properly
written makefile, the variable CFLAGS isincluded in each command that runs the C compiler, so afile
“foo. c' would be compiled something like this:

cc -c $(CFLAGS) foo.c

Thus, whatever value you set for CFLAGS affects each compilation that occurs. The makefile probably
specifies the usual value for CFLAGS, like this:

CFLAGS=-g

Each time you run make, you can override this value if you wish. For example, if you say "make
CFLAGS="-g -O", each C compilation will be done with "cc -c -g -O'. (Thisillustrates how you can use
quoting in the shell to enclose spaces and other special charactersin the value of avariable when you
overrideit.)

The variable CFLAGS is only one of many standard variables that exist just so that you can change them
thisway. See section Variables Used by Implicit Rules, for a complete list.

Y ou can aso program the makefile to look at additional variables of your own, giving the user the ability
to control other aspects of how the makefile works by changing the variables.

When you override a variable with a command argument, you can define either a recursively-expanded
variable or a simply-expanded variable. The examples shown above make a recursively-expanded
variable; to make a simply-expanded variable, write ;=" instead of "=". But, unless you want to include a
variable reference or function call in the value that you specify, it makes no difference which kind of
variable you create.

Thereis one way that the makefile can change a variable that you have overridden. Thisisto use the
over ri de directive, which isaline that looks like this. “override variable = value' (see section The

over ri de Directive).

Testing the Compilation of a Program

Normally, when an error happens in executing a shell command, make gives up immediately, returning a
nonzero status. No further commands are executed for any target. The error implies that the goal cannot be
correctly remade, and nak e reports this as soon as it knows.

When you are compiling a program that you have just changed, thisis not what you want. Instead, you
would rather that make try compiling every file that can be tried, to show you as many compilation errors
as possible.

On these occasions, you should use the -k’ or “--keep-going' flag. Thistells make to continue to consider
the other dependencies of the pending targets, remaking them if necessary, before it gives up and returns
nonzero status. For example, after an error in compiling one object file, "'make -k' will continue compiling
other object files even though it already knows that linking them will be impossible. In addition to
continuing after failed shell commands, "‘make -k’ will continue as much as possible after discovering that
it does not know how to make atarget or dependency file. Thiswill aways cause an error message, but
without “-k', it isafatal error (see section Summary of Options).

The usual behavior of make assumes that your purpose is to get the goals up to date; once make learns
that thisisimpossible, it might aswell report the failure immediately. The "-k' flag says that the real
purpose is to test as much as possible of the changes made in the program, perhaps to find several
Independent problems so that you can correct them all before the next attempt to compile. Thisiswhy
Emacs M-x compile command passes the -k’ flag by default.

Summary of Options

Hereisatable of al the options nake understands:

by

~m

These options are ignored for compatibility with other versions of make.

-Cdir'

“--directory=dir’
Change to directory dir before reading the makefiles. If multiple "-C' options are specified, each is
interpreted relative to the previous one: "-C/ -C etc' isequivalent to "-C /etc'. Thisistypically used
with recursive invocations of make (see section Recursive Use of nake).

g
“--debug'
Print debugging information in addition to normal processing. The debugging information says
which files are being considered for remaking, which file-times are being compared and with what

results, which files actually need to be remade, which implicit rules are considered and which are
applied--everything interesting about how make decides what to do.

“--environment-overrides

Give variables taken from the environment precedence over variables from makefiles. See section
Variables from the Environment.

-f file
--file=file
“--makefile=file
Read the file named file as a makefile. See section Writing Makefiles.

“hy
“--help'
Remind you of the options that mak e understands and then exit.

N o

-i
“--ignore-errors
Ignore al errorsin commands executed to remake files. See section Errors in Commands.
-l dir'
“--include-dir=dir'
Specifies adirectory dir to search for included makefiles. See section Including Other Makefiles. If
several "-1' options are used to specify several directories, the directories are searched in the order
specified.
-j [jobs]’
"--jobs=[jobg]’
Specifies the number of jobs (commands) to run simultaneously. With no argument, make runs as

many jobs simultaneously as possible. If there is more than one "-j' option, the last one is effective.
See section Parallel Execution, for more information on how commands are run.

e

“--keep-going’
Continue as much as possible after an error. While the target that failed, and those that depend on it,
cannot be remade, the other dependencies of these targets can be processed all the same. See section
Testing the Compilation of a Program.

“-| [load]'

"--load-average[=load]'

“--max-load[=load]'
Specifies that no new jobs (commands) should be started if there are other jobs running and the load
averageis at least load (afloating-point number). With no argument, removes a previous load limit.
See section Parallel Execution.

py

“--just-print’

“--dry-run'

“--recon'

Print the commands that would be executed, but do not execute them. See section Instead of
Executing the Commands.

“-ofile
“--old-file=file
“--assume-old=file

Do not remake the file file even if it is older than its dependencies, and do not remake anything on
account of changesin file. Essentially thefileistreated as very old and its rules are ignored. See
section Avoiding Recompilation of Some Files.

-p
“--print-data-base
Print the data base (rules and variable values) that results from reading the makefiles; then execute

as usual or as otherwise specified. This also prints the version information given by the "-v' switch
(see below). To print the data base without trying to remake any files, use "'make -p -f /dev/null’.

-q
“--question'
"Question mode". Do not run any commands, or print anything; just return an exit status that is zero

if the specified targets are already up to date, one if any remaking is required, or two if an error is
encountered. See section Instead of Executing the Commands.

-r
“--no-builtin-rules
Eliminate use of the built-in implicit rules (see section Using Implicit Rules). Y ou can still define
your own by writing pattern rules (see section Defining and Redefining Pattern Rules). The "-r'
option also clears out the default list of suffixes for suffix rules (see section Old-Fashioned Suffix
Rules). But you can still define your own suffixes with arule for . SUFFI XES, and then define
your own suffix rules.

°-S
“--silent’
T--quiet’

Silent operation; do not print the commands as they are executed. See section Command Echoing.

g
“--no-keep-going'
“--stop'
Cancel the effect of the -k’ option. Thisis never necessary except in arecursive make where "-k'
might be inherited from the top-level make via MAKEFL AGS (see section Recursive Use of nake)

or if you set "-k' in MAKEFLAGS in your environment.

Ly
“--touch'

Touch files (mark them up to date without really changing them) instead of running their
commands. Thisis used to pretend that the commands were done, in order to fool future invocations

of make. See section Instead of Executing the Commands.

S
“--version’
Print the version of the make program plus a copyright, alist of authors, and a notice that thereis
no warranty; then exit.
S

“--print-directory’
Print a message containing the working directory both before and after executing the makefile. This

may be useful for tracking down errors from complicated nests of recursive make commands. See
section Recursive Use of make. (In practice, you rarely need to specify this option since "make’

does it for you; see section The "--print-directory' Option.)

“--no-print-directory’
Disable printing of the working directory under - w. This option is useful when - wisturned on
automatically, but you do not want to see the extra messages. See section The "--print-directory’

Option.

W file

“--what-if=file

“--new-file=file

“--assume-new=fil€
Pretend that the target file has just been modified. When used with the "-n' flag, this shows you what
would happen if you were to modify that file. Without "-n', it is almost the same as running a

t ouch command on the given file before running mak e, except that the modification timeis
changed only in the imagination of make. See section Instead of Executing the Commands.

“--warn-undefined-variables

| ssue a warning message whenever mak e sees areference to an undefined variable. This can be
hel pful when you are trying to debug makefiles which use variables in complex ways.

Using Implicit Rules

Certain standard ways of remaking target files are used very often. For example, one customary way to
make an object file is from a C source file using the C compiler, cc.

Implicit rulestell make how to use customary techniques so that you do not have to specify them in detail
when you want to use them. For example, thereis an implicit rule for C compilation. File names determine
which implicit rules are run. For example, C compilation typically takesa™ . ¢' fileand makesa . 0
file. So make appliesthe implicit rule for C compilation when it sees this combination of file name
endings.

A chain of implicit rules can apply in sequence; for example, nake will remakea™ . o' filefroma .y
fileby way of a” . ¢' file. See section Chains of Implicit Rules.

The built-in implicit rules use several variables in their commands so that, by changing the values of the
variables, you can change the way the implicit rule works. For example, the variable CFLAGS controls the
flags given to the C compiler by the implicit rule for C compilation. See section Variables Used by

Implicit Rules.

Y ou can define your own implicit rules by writing pattern rules. See section Defining and Redefining
Pattern Rules.

Suffix rules are amore limited way to define implicit rules. Pattern rules are more general and clearer, but
suffix rules are retained for compatibility. See section Old-Fashioned Suffix Rules.

Using Implicit Rules

To alow make to find a customary method for updating atarget file, al you have to do isrefrain from
specifying commands yourself. Either write a rule with no command lines, or don't writearule at all. Then
make will figure out which implicit rule to use based on which kind of source file exists or can be made.

For example, suppose the makefile looks like this:

foo : foo.o bar.o
cc -o foo foo.o0 bar.o $(CFLAGS) $(LDFLAGS)

Because you mention " f 00. 0' but do not give arulefor it, make will automatically look for an implicit
rule that tells how to update it. This happens whether or not thefile ™ f 00. 0" currently exists.

If an implicit rule isfound, it can supply both commands and one or more dependencies (the source files).
Y ou would want to writearulefor * f 00. 0" with no command lines if you need to specify additional
dependencies, such as header files, that the implicit rule cannot supply.

Each implicit rule has atarget pattern and dependency patterns. There may be many implicit rules with the
same target pattern. For example, numerous rules make .o’ files: one, from a ".c' file with the C compiler;
another, from a ".p' file with the Pascal compiler; and so on. The rule that actually appliesis the one whose
dependencies exist or can be made. So, if you have afile” f 0o. ¢' , make will run the C compiler;
otherwisg, if you have afile” f 0o. p' , make will run the Pascal compiler; and so on.

Of course, when you write the makefile, you know which implicit rule you want make to use, and you
know it will choose that one because you know which possible dependency files are supposed to exist. See
section Catalogue of Implicit Rules, for a catalogue of all the predefined implicit rules.

Above, we said an implicit rule appliesif the required dependencies "exist or can be made"”. A file "can be
made" if it is mentioned explicitly in the makefile as atarget or a dependency, or if animplicit rule can be
recursively found for how to make it. When an implicit dependency is the result of another implicit rule,
we say that chaining is occurring. See section Chains of Implicit Rules.

In general, make searches for an implicit rule for each target, and for each double-colon rule, that has no
commands. A file that is mentioned only as a dependency is considered atarget whose rule specifies
nothing, so implicit rule search happens for it. See section Implicit Rule Search Algorithm, for the details

of how the search is done.

Note that explicit dependencies do not influence implicit rule search. For example, consider this explicit
rule:

foo.o0: foo.p

The dependency on " f 00. p' does not necessarily mean that make will remake ™ f 00. 0' according to
the implicit rule to make an object file,a™ . o' file, from a Pascal sourcefile,a™ . p' file. For example, if
“foo.c' adsoexists, theimplicit rule to make an object file from a C source file is used instead, because
it appears before the Pascal rule in the list of predefined implicit rules (see section Catalogue of Implicit

Rules).

If you do not want an implicit rule to be used for atarget that has no commands, you can give that target
empty commands by writing a semicolon (see section Using Empty Commands).

Catalogue of Implicit Rules

Hereis a catalogue of predefined implicit rules which are always available unless the makefile explicitly
overrides or cancels them. See section Canceling Implicit Rules, for information on canceling or

overriding an implicit rule. The *-r* or "--no-builtin-rules option cancels all predefined rules.

Not all of these rules will always be defined, even when the "-r' option is not given. Many of the
predefined implicit rules are implemented in mak e as suffix rules, so which ones will be defined depends
on the suffix list (the list of dependencies of the special target . SUFFI XES). The default suffix listis:
.out,.a,.ln,.o0,.c,.cc,.C.p,.T,.F.r,.y,.l,.s,.S,.nod,.sym.def,.h,.info,
.dvi,.tex,.texinfo,.texi,.txinfo,.w.ch.web,.sh,.elc,.el.Alloftheimplicit
rules described below whose dependencies have one of these suffixes are actually suffix rules. If you
modify the suffix list, the only predefined suffix rulesin effect will be those named by one or two of the
suffixes that are on the list you specify; rules whose suffixes fail to be on the list are disabled. See section
Old-Fashioned Suffix Rules, for full details on suffix rules.

Compiling C programs

“n. o' ismadeautomatically from ™ n. ¢' with acommand of the form “$(CC) -c $(CPPFLAGYS)
$(CFLAGS)".

Compiling C++ programs
"n. o' ismade automatically from " n. cc' or n. C with acommand of the form "$(CXX) -c
$(CPPFLAGS) $(CXXFLAGS)'. We encourage you to use the suffix ".cc' for C++ source files
instead of ".C'.
Compiling Pascal programs
“n. o' ismadeautomatically from ™ n. p' with the command “$(PC) -c $(PFLAGS)'.
Compiling Fortran and Ratfor programs

"n. o' ismadeautomatically from n.r', n. F or n.f' by running the Fortran compiler.
The precise command used is as follows:

f

"$(FC) -c $(FFLAGS)'.
F
"$(FC) -c $(FFLAGS) $(CPPFLAGS)'.

"$(FC) -c $(FFLAGS) $(RFLAGS)'.
Preprocessing Fortran and Ratfor programs

"n. f' ismadeautomatically from " n.r' or n. F . Thisrulerunsjust the preprocessor to
convert a Ratfor or preprocessable Fortran program into a strict Fortran program. The precise
command used is as follows:
“F

"$(FC) -F $(CPPFLAGS) $(FFLAGYS)'.

"$(FC) -F $(FFLAGS) $(RFLAGS).
Compiling Modula-2 programs
“n. sym ismadefrom ™ n. def' with acommand of the form "$(M2C) $(M2FLAGYS)

$(DEFFLAGS)'. " n. o' ismadefrom ™ n. nod' ; theformis. "$(M2C) $(M2FLAGS)
$(MODFLAGS).

Assembling and preprocessing assembler programs

"n. o' ismade automatically from " n. s' by running the assembler, as. The precise command is
"B(AS) S(ASFLAGS). " n. s' ismade automatically from * n. S' by running the C preprocessor,
cpp. The precise command is "$(CPP) $(CPPFLAGS)'.

Linking asingle object file
"n' ismade automatically from ™ n. o' by running the linker (usualy caled | d) viathe C
compiler. The precise command used is "$(CC) $(LDFLAGS) n.o $(LOADLIBES)'. Thisrule does
the right thing for a simple program with only one source file. It will aso do the right thing if there

are multiple object files (presumably coming from various other source files), one of which has a
name matching that of the executable file. Thus,

X: y.0 z.0
when x.c', y.c' and z.c' al exist will execute:

CC -C X.C -0 X.0

CC -C y.C -0 Yy.0

cC -C z.C -0 Z.0

CC X.0 y.0 Z.0 -0 X

rm-f Xx.o

rm-f y.o

rm-f z.o0

In more complicated cases, such as when there is no object file whose name derives from the
executable file name, you must write an explicit command for linking. Each kind of file
automatically made into ".0' object files will be automatically linked by using the compiler ("$(CC)’,

"$(FC)' or “$(PC)"; the C compiler “$(CC)' is used to assemble ".s files) without the *-c' option. This
could be done by using the ".0' object files as intermediates, but it is faster to do the compiling and
linking in one step, so that's how it's done.

Y acc for C programs

“n. c' ismadeautomaticaly from ™ n. y' by running Y acc with the command "$(Y ACC)
$(YFLAGS).

Lex for C programs

“n. ¢' ismade automatically from ™ n. | ' by by running Lex. The actua command is "$(LEX)
$(LFLAGS)".

Lex for Ratfor programs

“n. r' ismadeautomaticaly from ™ n. | ' by by running Lex. The actual command is "$(LEX)
$(LFLAGS)'. The convention of using the same suffix ".I"' for all Lex files regardless of whether
they produce C code or Ratfor code makes it impossible for make to determine automatically which
of the two languages you are using in any particular case. If make is called upon to remake an
object filefroma ".I' file, it must guess which compiler to use. It will guess the C compiler, because
that is more common. If you are using Ratfor, make sure make knows this by mentioning ™ n. r'

in the makefile. Or, if you are using Ratfor exclusively, with no C files, remove ".c' from the list of
implicit rule suffixes with:

. SUFFI XES:
.SUFFI XES: .o .r .f .|

Making Lint Libraries from C, Y acc, or Lex programs

“n.In' ismadefrom ™ n. c' byrunningl i nt.The precise commandis $(LINT)
S(LINTFLAGS) $(CPPFLAGS) -i'. The same command is used on the C code produced from
‘n.y' o n.l".

TeX and Web

"n.dvi' ismadefrom n.tex' withthecommand "$(TEX)". " n. tex' ismadefrom
“n.web' with " $(WEAVE)', or from ™ n. w (andfrom ™ n. ch' if it exists or can be made) with
"$(CWEAVE)'. " n. p' ismadefrom™ n. web' with " $(TANGLE)'and " n. ¢c' ismade from
“n.w (andfrom™ n.ch" if it exists or can be made) with "$(CTANGLE)'".

Texinfo and Info
"n.dvi' ismadefrom n.texinfo', n.texi',or n.txinfo',withthecommand

"$(TEXI2DVI) $(TEXI2DVI_FLAGS). "n.info' ismadefrom ™ n.texinfo', n.texi',or
“n. txinfo',withthecommand $(MAKEINFO) $(MAKEINFO_FLAGYS)'.

RCS
Any file” n' isextracted if necessary from an RCSfile named either " n, v' or RCS/ n, v' . The

precise command used is "$(CO) $(COFLAGS)'. " n' will not be extracted from RCSif it already
exists, even if the RCSfileis newer. Therulesfor RCS are terminal (see section Match-Anything

Pattern Rules), so RCS files cannot be generated from another source; they must actually exist.
SCCS

Any file” n' isextracted if necessary from an SCCSfile named either “s. n" or * SCCS/ s. n' .

The precise command used is "$(GET) $(GFLAGS)'. The rules for SCCS are terminal (see section
Match-Anything Pattern Rules), so SCCS files cannot be generated from another source; they must
actually exist. For the benefit of SCCS, afile” n' iscopied from " n. sh' and made executable (by
everyone). Thisisfor shell scriptsthat are checked into SCCS. Since RCS preserves the execution
permission of afile, you do not need to use this feature with RCS. We recommend that you avoid
using of SCCS. RCSiswidely held to be superior, and is also free. By choosing free software in
place of comparable (or inferior) proprietary software, you support the free software movement.

Usually, you want to change only the variables listed in the table above, which are documented in the
following section.

However, the commands in built-in implicit rules actually use variables such as COVPI LE. c, LI NK. p,
and PREPRQOCESS. S, whose values contain the commands listed above.

mak e follows the convention that the rule to compilea ™ . x' source file uses the variable COVPI LE. X.
Similarly, the rule to produce an executablefroma™ . x' fileusesLI NK. x; and the rule to preprocess a
"L x" file uses PREPROCESS. X.

Every rule that produces an object file uses the variable OUTPUT _OPTI ON. make defines this variable
either to contain -0 $@', or to be empty, depending on a compile-time option. Y ou need the "-0' option to
ensure that the output goes into the right file when the source file isin adifferent directory, as when using
VPATH (see section Searching Directories for Dependencies). However, compilers on some systems do
not accept a -0' switch for object files. If you use such a system, and use VPATH, some compilations will
put their output in the wrong place. A possible workaround for this problem isto give CUTPUT _COPTI ON
thevalue ”; mv $*.0 $@'".

Variables Used by Implicit Rules

The commands in built-in implicit rules make liberal use of certain predefined variables. Y ou can alter
these variables in the makefile, with arguments to make, or in the environment to alter how the implicit
rules work without redefining the rules themselves.

For example, the command used to compile a C source file actually says "$(CC) -c $(CFLAGS)
$(CPPFLAGS)'. The default values of the variables used are "cc' and nothing, resulting in the command
“cc -c'. By redefining "CC' to 'ncc', you could cause 'ncc' to be used for al C compilations performed by
theimplicit rule. By redefining "CFLAGS to be "-g', you could pass the "-g' option to each compilation.
All implicit rules that do C compilation use "$(CC)' to get the program name for the compiler and all
include "$(CFLAGS)' among the arguments given to the compiler.

The variables used in implicit rules fall into two classes: those that are names of programs (like CC) and
those that contain arguments for the programs (like CFLAGS). (The "name of a program” may aso contain
some command arguments, but it must start with an actual executable program name.) If avariable value
contains more than one argument, separate them with spaces.

Hereisatable of variables used as names of programs in built-in rules:
AR
Archive-maintaining program; default “ar'.

AS

Program for doing assembly; default "as.
CC

Program for compiling C programs; default “cc'.
CXX

Program for compiling C++ programs; default "g++".

CO

Program for extracting afile from RCS; default “co'.
CPP

Program for running the C preprocessor, with results to standard output; default "$(CC) -E'.
FC

Program for compiling or preprocessing Fortran and Ratfor programs; default {77
GET

Program for extracting afile from SCCS; default "get'.
LEX

Program to use to turn Lex grammars into C programs or Ratfor programs; default “lex'.
PC

Program for compiling Pascal programs; default "pc'.
YACC

Program to use to turn Y acc grammars into C programs; default “yacc'.
YACCR

Program to use to turn Y acc grammars into Ratfor programs; default “yacc -r'.
MAKEI NFO

Program to convert a Texinfo source file into an Info file; default "makeinfo'.
TEX

Program to make TeX DVI filesfrom TeX source; default “tex'.
TEXI 2DVI

Program to make TeX DV files from Texinfo source; default “texi2dvi'.
WEAVE

Program to translate Web into TeX; default “weave'.
CWEAVE

Program to trandate C Web into TeX; default “cweave'.
TANGLE

Program to trandate Web into Pascal; default “tangle'.
CTANGLE

Program to trandate C Web into C; default "ctangl€'.
RM

Command to remove afile; default 'rm -f'.
Hereisatable of variables whose values are additional arguments for the programs above. The default
valuesfor all of these isthe empty string, unless otherwise noted.
ARFLAGS
Flags to give the archive-maintaining program; default “rv'.
ASFLAGS
Extraflags to give to the assembler (when explicitly invoked ona".s or .S file).
CFLAGS
Extraflagsto give to the C compiler.
CXXFLAGS
Extraflagsto give to the C++ compiler.
COFLAGS
Extraflagsto give to the RCS co program.
CPPFLAGS
Extraflagsto give to the C preprocessor and programs that use it (the C and Fortran compilers).
FFLAGS
Extraflagsto give to the Fortran compiler.
GFLAGS
Extraflagsto give to the SCCSget program.
LDFLAGS
Extraflags to give to compilers when they are supposed to invoke the linker, “Id'.
LFLAGS
Extraflagsto giveto Lex.
PFLAGS
Extraflagsto give to the Pascal compiler.
RFLAGS
Extraflagsto give to the Fortran compiler for Ratfor programs.
YFLAGS
Extraflagsto giveto Yacc.

Chains of Implicit Rules

Sometimes a file can be made by a sequence of implicit rules. For example, afile” n. o' could be made
from ™ n.y' by running first Yacc and then cc. Such a sequenceis called a chain.

If thefile n. c' exists, or is mentioned in the makefile, no special searching is required: make finds that
the object file can be made by C compilation from ™ n. c¢' ; later on, when considering how to make
“n. c',therulefor running Yaccisused. Ultimately both " n. ¢’ and " n. o' are updated.

However, evenif “ n. ¢' does not exist and is not mentioned, make knows how to envision it as the
missing link between " n. o' and " n.y' !Inthiscase, n. c' iscaled anintermediate file. Once make
has decided to use the intermediate file, it is entered in the data base as if it had been mentioned in the
makefile, along with the implicit rule that says how to create it.

Intermediate files are remade using their rulesjust like all other files. The difference isthat the
intermediate file is deleted when make isfinished. Therefore, the intermediate file which did not exist
before mak e aso does not exist after make. The deletion is reported to you by printing a 'rm -f* command
that shows what nake isdoing. (You can list the target pattern of an implicit rule (such as %.0") asa
dependency of the special target . PRECI OUS to preserve intermediate files made by implicit rules whose
target patterns match that file's name; see section Interrupting or Killing make.)

A chain can involve more than two implicit rules. For example, it is possible to make afile” f 00" from
"RCS/ f 00.y, v' byrunning RCS, Yaccand cc. Then both " f 0o0.y' and " f 00. c' areintermediate
filesthat are deleted at the end.

No single implicit rule can appear more than once in a chain. This means that make will not even consider
such aridiculous thing asmaking " f oo’ from ™ f 00. 0. 0" by running the linker twice. This constraint
has the added benefit of preventing any infinite loop in the search for an implicit rule chain.

There are some specia implicit rules to optimize certain cases that would otherwise be handled by rule
chains. For example, making " f 00" from " f 00. ¢' could be handled by compiling and linking with
separate chained rules, using " f 00. 0' asan intermediate file. But what actually happensis that a special
rule for this case does the compilation and linking with asingle cc command. The optimized rule is used
in preference to the step-by-step chain because it comes earlier in the ordering of rules.

Defining and Redefining Pattern Rules

Y ou define an implicit rule by writing a pattern rule. A pattern rule looks like an ordinary rule, except that
its target contains the character “%' (exactly one of them). The target is considered a pattern for matching
file names; the "%' can match any nonempty substring, while other characters match only themselves. The
dependencies likewise use %' to show how their names relate to the target name.

Thus, a pattern rule "%.0 : %.c' says how to make any file " st em o' from another file" stem c' .

Note that expansion using %' in pattern rules occurs after any variable or function expansions, which
take place when the makefile is read. See section How to Use Variables, and section Functions for

Transforming Text.

Introduction to Pattern Rules

A pattern rule contains the character "%’ (exactly one of them) in the target; otherwise, it looks exactly like
an ordinary rule. The target is a pattern for matching file names; the "%' matches any nonempty substring,
while other characters match only themselves.

For example, "%.c' as a pattern matches any file name that endsin ".c'. "s.%.c' as a pattern matches any file
name that startswith °'s.', endsin ".c' and is at least five characters long. (There must be at least one
character to match the "%'.) The substring that the "%' matchesis called the stem.

%' in adependency of a pattern rule stands for the same stem that was matched by the "%’ in the target. In
order for the pattern rule to apply, its target pattern must match the file name under consideration, and its
dependency patterns must name files that exist or can be made. These files become dependencies of the
target.

Thus, arule of the form

%0 : %c ; command...

specifies how to make afile” n. o' , with another file " n. ¢' asits dependency, provided that “ n. c'
exists or can be made.

There may also be dependencies that do not use "%'; such a dependency attaches to every file made by this
pattern rule. These unvarying dependencies are useful occasionaly.

A pattern rule need not have any dependencies that contain "%/, or in fact any dependencies at all. Such a
ruleis effectively ageneral wildcard. It provides away to make any file that matches the target pattern.
See section Defining L ast-Resort Default Rules.

Pattern rules may have more than one target. Unlike normal rules, this does not act as many different rules
with the same dependencies and commands. If a pattern rule has multiple targets, make knows that the
rule's commands are responsible for making all of the targets. The commands are executed only once to
make all the targets. When searching for a pattern rule to match atarget, the target patterns of arule other
than the one that matches the target in need of arule are incidental: make worries only about giving
commands and dependenciesto the file presently in question. However, when this file's commands are
run, the other targets are marked as having been updated themsel ves.

The order in which pattern rules appear in the makefile is important since thisis the order in which they
are considered. Of equally applicable rules, only the first one found is used. The rules you write take
precedence over those that are built in. Note however, that a rule whose dependencies actually exist or are
mentioned always takes priority over arule with dependencies that must be made by chaining other
implicit rules.

Pattern Rule Examples

Here are some examples of pattern rules actually predefined in make. First, the rule that compiles ".c' files
into ".0' files:

%o : %c
$(CO -c $(CFLAGS) $(CPPFLAGS) $< -0 $@

defines arule that can make any file ™ x. o' from ™ x. ¢' . The command uses the automatic variables
"$@' and "$<' to substitute the names of the target file and the source file in each case where the rule
applies (see section Automatic Variables).

Hereis a second built-in rule:

% :: RCS/ % v
$(CO $(COFLAGS) $<

defines arule that can make any file” x' whatsoever from a corresponding file ™ x, v' in the subdirectory
" RCS' . Sincethetarget is %/, thisrule will apply to any file whatever, provided the appropriate
dependency file exists. The double colon makes the rule terminal, which means that its dependency may
not be an intermediate file (see section Match-Anything Pattern Rules).

This pattern rule has two targets:

%tab.c %tab.h: %y
bi son -d $<

Thistellsmake that the command “bison -d x.y' will makeboth ™ x. t ab. ¢’ and " x. t ab. h' . If thefile
"foo' dependsonthefiles” parse.tab. o' and scan. o' andthefile’ scan. o' dependson the
file” parse.tab. h' ,when parse.y' ischanged, the command "bison -d parse.y' will be executed
only once, and the dependencies of both * par se. t ab. o' and " scan. o' will be satisfied.
(Presumably thefile ™ par se. t ab. o' will berecompiled from ™ par se. t ab. ¢' andthefile

“scan. o' from scan. c',while’ f oo' islinked from ™ parse.tab. o', scan. o', anditsother
dependencies, and it will execute happily ever after.)

Automatic Variables

Suppose you are writing a pattern rule to compilea ".c' fileinto a .o’ file: how do you write the "cc'
command so that it operates on the right source file name? Y ou cannot write the name in the command,
because the name is different each time the implicit rule is applied.

What you do is use a special feature of make, the automatic variables. These variables have values
computed afresh for each rule that is executed, based on the target and dependencies of the rule. In this
example, you would use "$@' for the object file name and “$<' for the source file name.

Hereis atable of automatic variables:

3@
The file name of the target of therule. If the target is an archive member, then “$@' is the name of
the archivefile. In a pattern rule that has multiple targets (see section Introduction to Pattern Rules),
"$@' isthe name of whichever target caused the rule's commands to be run.

$%
The target member name, when the target is an archive member. See section Using nak e to Update
Archive Files. For example, if thetargetis™ f 0o. a(bar. 0) ' then '$%'is bar. o' and "'$@'is
“foo.a' . $% isempty when the target is not an archive member.

$<
The name of the first dependency. If the target got its commands from an implicit rule, thiswill be
the first dependency added by the implicit rule (see section Using Implicit Rules).

$?

The names of all the dependencies that are newer than the target, with spaces between them. For

dependencies which are archive members, only the member named is used (see section Using neke
to Update Archive Files).

$/\
The names of al the dependencies, with spaces between them. For dependencies which are archive
members, only the member named is used (see section Using nak e to Update Archive Files). A
target has only one dependency on each other file it depends on, no matter how many times each
fileislisted as adependency. So if you list a dependency more than once for atarget, the value of
$” contains just one copy of the name.

$+
Thisislike "$V, but dependencies listed more than once are duplicated in the order they were listed
in the makefile. Thisis primarily useful for usein linking commands where it is meaningful to
repeat library file namesin a particular order.

$*
The stem with which an implicit rule matches (see section How Patterns Match). If thetarget is
“dir/a.foo.b' andthetarget patternis” a. % b' thenthestemis di r/f oo’ . Thestemis
useful for constructing names of related files. In a static pattern rule, the stem is part of the file
name that matched the "%’ in the target pattern. In an explicit rule, there is no stem; so "$*' cannot
be determined in that way. Instead, if the target name ends with a recognized suffix (see section
Old-Fashioned Suffix Rules), "$*' is set to the target name minus the suffix. For example, if the
target nameis ‘foo.c', then "$*' isset to foo', since ".c' isasuffix. GNU make does this bizarre
thing only for compatibility with other implementations of make. Y ou should generally avoid using
“$*" except inimplicit rules or static pattern rules. If the target namein an explicit rule does not end
with arecognized suffix, "$*' is set to the empty string for that rule.

"$7 isuseful evenin explicit rules when you wish to operate on only the dependencies that have changed.
For example, suppose that an archivenamed " | i b* is supposed to contain copies of several object files.
Thisrule copies just the changed object filesinto the archive:

lib: foo.o bar.o lose.0o wn.o
ar r lib $?

Of the variables listed above, four have values that are single file names, and two have values that are lists
of file names. These six have variants that get just the file's directory name or just the file name within the
directory. The variant variables names are formed by appending "D’ or "F', respectively. These variants
are semi-obsolete in GNU nmake since the functionsdi r and not di r can be used to get asimilar effect
(see section Functions for File Names). Note, however, that the "F variants all omit the trailing slash

which always appears in the output of thedi r function. Here is atable of the variants:
“$(@D)
The directory part of the file name of the target, with the trailing slash removed. If the value of "$@"
is dir/foo. o' then $(@D)' is dir'.Thisvaueis .' if ‘$@' doesnot contain a slash.
B(@F)
The file-within-directory part of the file name of the target. If the value of "$@' is " di r/ f 00. 0
then "$(@F)'is” f 00. 0' . "$(@F)' is equivalent to "$(notdir $@)'.

“$(*D)'

“$C*F)
The directory part and the file-within-directory part of thestem; " di r' and " f 00" inthis
example.

“$(%D)'

“$(%F)'
The directory part and the file-within-directory part of the target archive member name. This makes

sense only for archive member targets of theform ™ ar chi ve(menber) ' andisuseful only when
member may contain a directory name. (See section Archive Members as Targets.)

*$(<D)'
“$(<F)'

The directory part and the file-within-directory part of the first dependency.
“$("D)'
“$("F)'

Lists of the directory parts and the file-within-directory parts of all dependencies.
“$(?D)'
“$(7F)

Lists of the directory parts and the file-within-directory parts of all dependencies that are newer than
the target.

Note that we use a special stylistic convention when we talk about these automatic variables; we write "the
value of "$<", rather than "the variable <" as we would write for ordinary variables such as obj ect s and
CFLAGS. We think this convention looks more natural in this special case. Please do not assume it hasa
deep significance; "$<' refersto the variable named < just as " $(CFLAGYS)' refers to the variable named
CFLAGS. You could just aswell use "$(<)' in place of "$<".

How Patterns Match

A target pattern is composed of a %' between a prefix and a suffix, either or both of which may be empty.
The pattern matches a file name only if the file name starts with the prefix and ends with the suffix,
without overlap. The text between the prefix and the suffix is called the stem. Thus, when the pattern "%.0'
matchesthefilename "t est . o' , the stemis "test’. The pattern rule dependencies are turned into actual
file names by substituting the stem for the character "%'. Thus, if in the same example one of the
dependenciesiswritten as "%.c', it expands to "test.c'.

When the target pattern does not contain a slash (and it usually does not), directory namesin the file
names are removed from the file name before it is compared with the target prefix and suffix. After the
comparison of the file name to the target pattern, the directory names, along with the slash that ends them,
are added on to the dependency file names generated from the pattern rule's dependency patterns and the
file name. The directories are ignored only for the purpose of finding an implicit rule to use, not in the
application of that rule. Thus, "e%t' matchesthefilename ™ src/ eat ' , with “src/a as the stem. When
dependencies are turned into file names, the directories from the stem are added at the front, while the rest
of the stem is substituted for the "%'. The stem “src/a with a dependency pattern "c%r’' gives the file name

“src/car'.

Match-Anything Pattern Rules

When a pattern rule'starget isjust "%, it matches any file name whatever. We call these rules
match-anything rules. They are very useful, but it can take alot of time for make to think about them,
because it must consider every such rule for each file name listed either as atarget or as a dependency.

Suppose the makefile mentions ™ f 0o. ¢' . For thistarget, make would have to consider making it by
linking an object file” f 00. c. o', or by C compilation-and-linking in one step from " f 0o. c. ¢’ , or by
Pascal compilation-and-linking from ™ f 0o. c. p' , and many other possibilities.

We know these possibilities are ridiculous since ™ f 0o. ¢' isaC sourcefile, not an executable. If make
did consider these possihilities, it would ultimately reject them, because filessuchas ™ f 0o. ¢. o' and
"foo.c.p' would not exist. But these possibilities are so numerous that make would run very slowly if
it had to consider them.

To gain speed, we have put various constraints on the way make considers match-anything rules. There
are two different constraints that can be applied, and each time you define a match-anything rule you must
choose one or the other for that rule.

One choice is to mark the match-anything rule as terminal by defining it with a double colon. When arule
iIsterminal, it does not apply unless its dependencies actually exist. Dependencies that could be made with
other implicit rules are not good enough. In other words, no further chaining is allowed beyond aterminal

rule.

For example, the built-in implicit rules for extracting sources from RCS and SCCSfiles areterminal; asa
result, if thefile” f 0o. ¢, v' doesnot exist, make will not even consider trying to make it as an
intermediate filefrom ™ f 00. ¢, v. 0' or from ™ RCS/ SCCS/ s. f 00. ¢, v' . RCSand SCCSfilesare
generally ultimate source files, which should not be remade from any other files; therefore, make can save
time by not looking for ways to remake them.

If you do not mark the match-anything rule as terminal, then it is nonterminal. A nonterminal
match-anything rule cannot apply to afile name that indicates a specific type of data. A file name
indicates a specific type of dataif some non-match-anything implicit rule target matchesit.

For example, thefilename ™ f 00. ¢’ matchesthe target for the pattern rule "%.c : %.y' (theruleto run
Y acc). Regardless of whether thisruleis actually applicable (which happens only if thereisafile
“foo.y'"),thefact that itstarget matches is enough to prevent consideration of any nonterminal
match-anything rulesfor thefile " f 0o. ¢' . Thus, make will not even consider trying to make " f 0o. ¢’
as an executablefilefrom " f co. c. o', foo.c.c', foo.c.p',€tc.

The motivation for this constraint is that nonterminal match-anything rules are used for making files
containing specific types of data (such as executable files) and afile name with a recognized suffix
indicates some other specific type of data (such as a C sourcefile).

Special built-in dummy pattern rules are provided solely to recognize certain file names so that
nonterminal match-anything rules will not be considered. These dummy rules have no dependencies and
no commands, and they are ignored for all other purposes. For example, the built-in implicit rule

%p

exists to make sure that Pascal sourcefilessuchas ™ f 00. p' match a specific target pattern and thereby
prevent time from being wasted looking for * f 00. p. o' or foo.p.c'.

Dummy pattern rules such as the one for "%.p' are made for every suffix listed as valid for use in suffix
rules (see section Old-Fashioned Suffix Rules).

Canceling Implicit Rules

Y ou can override a built-in implicit rule (or one you have defined yourself) by defining a new pattern rule
with the same target and dependencies, but different commands. When the new rule is defined, the built-in
oneisreplaced. The new rule's position in the sequence of implicit rulesis determined by where you write
the new rule.

Y ou can cancel abuilt-in implicit rule by defining a pattern rule with the same target and dependencies,
but no commands. For example, the following would cancel the rule that runs the assembler:

%0 : %Ws

Defining Last-Resort Default Rules

Y ou can define alast-resort implicit rule by writing atermina match-anything pattern rule with no
dependencies (see section Match-Anything Pattern Rules). Thisisjust like any other pattern rule; the only
thing special about it isthat it will match any target. So such arule's commands are used for all targets and
dependencies that have no commands of their own and for which no other implicit rule applies.

For example, when testing a makefile, you might not care if the source files contain real data, only that
they exist. Then you might do this:

% :
touch $@
to cause all the source files needed (as dependencies) to be created automatically.

Y ou can instead define commands to be used for targets for which there are no rules at all, even ones
which don't specify commands. Y ou do this by writing arule for the target . DEFAULT. Such arule's
commands are used for al dependencies which do not appear as targetsin any explicit rule, and for which
no implicit rule applies. Naturally, thereisno . DEFAULT rule unless you write one.

If you use. DEFAULT with no commands or dependencies:

. DEFAULT:

the commands previously stored for . DEFAULT are cleared. Then make actsasif you had never defined
. DEFAULT at all.

If you do not want atarget to get the commands from a match-anything pattern rule or . DEFAULT, but
you also do not want any commands to be run for the target, you can give it empty commands (see section
Using Empty Commands).

Y ou can use a last-resort rule to override part of another makefile. See section Overriding Part of Another
Makefile.

Old-Fashioned Suffix Rules

Suffix rules are the old-fashioned way of defining implicit rules for make. Suffix rules are obsolete
because pattern rules are more general and clearer. They are supported in GNU make for compatibility
with old makefiles. They come in two kinds: double-suffix and single-suffix.

A double-suffix rule is defined by a pair of suffixes: the target suffix and the source suffix. It matches any
file whose name ends with the target suffix. The corresponding implicit dependency is made by replacing
the target suffix with the source suffix in the file name. A two-suffix rule whose target and source suffixes
are ".0' and ".c' isequivalent to the pattern rule %.0: %.cC'.

A single-suffix ruleis defined by a single suffix, which is the source suffix. It matches any file name, and
the corresponding implicit dependency name is made by appending the source suffix. A single-suffix rule
whose source suffix is ".c' is equivalent to the pattern rule "% : %.c'.

Suffix rule definitions are recognized by comparing each rule's target against a defined list of known
suffixes. When make sees arule whose target is a known suffix, thisrule is considered a single-suffix
rule. When make sees arule whose target is two known suffixes concatenated, thisrule istaken asa
double-suffix rule.

For example, ".c' and ".0" are both on the default list of known suffixes. Therefore, if you definearule
whose target is ".c.0', make takesit to be a double-suffix rule with source suffix ".c' and target suffix ".0'".
Hereis the old-fashioned way to define the rule for compiling a C sourcefile;

.C.0:
$(CC) -c $(CFLAGS) $(CPPFLAGS) -0 $@ $<
Suffix rules cannot have any dependencies of their own. If they have any, they are treated as normal files
with funny names, not as suffix rules. Thus, the rule:
.c.0: foo.h
$(CO -c $(CFLAGS) $(CPPFLAGS) -0 $@ $<
tells how to makethefile " . ¢. o' from the dependency file f 0o. h' , andisnot at al like the pattern
rule:
%o0: %c foo.h
$(CC) -c $(CFLAGS) $(CPPFLAGS) -0 $@ $<

which tells how to make ".o' files from ".c' files, and makes all ".o' files using this pattern rule also depend

on foo.h'.

Suffix rules with no commands are also meaningless. They do not remove previous rules as do pattern
rules with no commands (see section Canceling Implicit Rules). They simply enter the suffix or pair of

suffixes concatenated as a target in the data base.

The known suffixes are ssimply the names of the dependencies of the specia target . SUFFI XES. Y ou can
add your own suffixes by writing arule for . SUFFI XES that adds more dependencies, asin:

. SUFFI XES: .hack .win
which adds ".hack' and ".win' to the end of the list of suffixes.

If you wish to eliminate the default known suffixes instead of just adding to them, write arule for
. SUFFI XES with no dependencies. By special dispensation, this eliminates all existing dependencies of
. SUFFI XES. Y ou can then write another rule to add the suffixes you want. For example,

. SUFFI XES: # Delete the default suffixes
.SUFFI XES: .c .o .h # Define our suffix |ist

The "-r' or "--no-builtin-rules flag causes the default list of suffixesto be empty.

The variable SUFFI XES is defined to the default list of suffixes before make reads any makefiles. Y ou
can change the list of suffixes with arule for the special target . SUFFI XES, but that does not alter this
variable.

Implicit Rule Search Algorithm

Hereis the procedure make uses for searching for an implicit rule for atarget t. This procedureis
followed for each double-colon rule with no commands, for each target of ordinary rules none of which
have commands, and for each dependency that is not the target of any rule. It isalso followed recursively
for dependencies that come from implicit rules, in the search for a chain of rules.

Suffix rules are not mentioned in this algorithm because suffix rules are converted to equivalent pattern
rules once the makefiles have been read in.

For an archive member target of the form "archive(member)', the following algorithm is run twice, first
using the entire target name t, and second using “(member)' asthe target t if the first run found no rule.

1. Splittinto adirectory part, called d, and the rest, called n. For example, if tis “src/foo.o', thendis
‘sre/*and nis foo.0'.

2. Makealist of al the pattern rules one of whose targets matchest or n. If the target pattern contains
adash, it ismatched against t; otherwise, against n.

3. If any rulein that list is not a match-anything rule, then remove all nonterminal match-anything
rules from thelist.

4. Remove from thelist al rules with no commands.
5. For each pattern rule in the list:

1. Find the stem s, which isthe nonempty part of t or n matched by the "%' in the target pattern.

2. Compute the dependency names by substituting sfor "%'; if the target pattern does not
contain a slash, append d to the front of each dependency name.

3. Test whether all the dependencies exist or ought to exist. (If afile nameis mentioned in the
makefile as atarget or as an explicit dependency, then we say it ought to exist.) If all
dependencies exist or ought to exist, or there are no dependencies, then this rule applies.

6. If no pattern rule has been found so far, try harder. For each pattern rule in the list:
1. If theruleisterminal, ignoreit and go on to the next rule.
2. Compute the dependency names as before.
3. Test whether all the dependencies exist or ought to exist.
4

. For each dependency that does not exist, follow this algorithm recursively to seeif the
dependency can be made by an implicit rule.

5. If all dependencies exist, ought to exist, or can be made by implicit rules, then thisrule
applies.
7. 1f noimplicit rule applies, the rule for . DEFAULT, if any, applies. In that case, givet the same
commandsthat . DEFAULT has. Otherwise, there are no commands for t.

Once arule that applies has been found, for each target pattern of the rule other than the one that matched t
or n, the "%’ in the pattern is replaced with s and the resultant file name is stored until the commands to
remake the target file t are executed. After these commands are executed, each of these stored file names
are entered into the data base and marked as having been updated and having the same update status as the
filet.

When the commands of a pattern rule are executed for t, the automatic variables are set corresponding to
the target and dependencies. See section Automatic Variables.

Using nake to Update Archive Files

Archive files are files containing named subfiles called members; they are maintained with the program ar
and their main use is as subroutine libraries for linking.

Archive Members as Targets

An individual member of an archive file can be used as atarget or dependency in make. Y ou specify the
member named member in archive file archive as follows:

ar chi ve(nmenber)

This construct is available only in targets and dependencies, not in commands! Most programs that you
might use in commands do not support this syntax and cannot act directly on archive members. Only ar
and other programs specifically designed to operate on archives can do so. Therefore, valid commands to
update an archive member target probably must use ar . For example, this rule says to create a member
“hack. o' inarchive foolib" by copyingthefile” hack. o' :

fool i b(hack.o) : hack.o
ar cr foolib hack.o

In fact, nearly all archive member targets are updated in just thisway and thereis an implicit rule to do it
for you. Note: The "c' flag to ar isrequired if the archive file does not already exist.

To specify several members in the same archive, you can write all the member names together between
the parentheses. For example:
fool i b(hack. o kl udge. o)

Is equivalent to:

fool i b(hack. o) foolib(kludge. o)

Y ou can also use shell-style wildcards in an archive member reference. See section Using Wildcard
Charactersin File Names. For example, “foolib(*.0)' expandsto all existing members of the " f ool i b’
archive whose names end in ".0"; perhaps “foolib(hack.o) foolib(kludge.o)'.

Implicit Rule for Archive Member Targets

Recall that atarget that lookslike " a(m) ' standsfor the member named m in the archivefile a.

When nake looks for an implicit rule for such atarget, as a special feature it considers implicit rules that
match ~ (m) ' , aswell as those that match the actual target " a(n) ' .

This causes one special rulewhosetargetis™ (% ' to match. Thisrule updatesthetarget " a(m) ' by
copying the file m into the archive. For example, it will update the archive member target
"foo.a(bar.o)' bycopyingthefile bar. o' intothearchive f 00.a' asamember named
“bar.o'.

When thisruleis chained with others, the result is very powerful. Thus, "make "foo.a(bar.0)"" (the quotes
are needed to protect the (" and °)' from being interpreted specially by the shell) in the presence of afile
“bar. c¢' isenough to cause the following commands to be run, even without a makefile:

CC -Cc bar.c -0 bar.o
ar r foo.a bar.o
rm-f bar.o

Here make hasenvisioned thefile bar . o' asan intermediate file. See section Chains of Implicit Rules.

Implicit rules such as this one are written using the automatic variable "$%'. See section Automatic
Variables.

An archive member name in an archive cannot contain a directory name, but it may be useful in a makefile
to pretend that it does. If you write an archive member target “ f oo. a(dir/file. o), make will
perform automatic updating with this command:

ar r foo.a dir/file.o

which has the effect of copying thefile dir/file. o' intoamembernamed file. o' .In
connection with such usage, the automatic variables % and %4~ may be useful.

Updating Archive Symbol Directories

An archivefilethat isused as alibrary usually contains a special member named ~ . SYMDEF' that
contains a directory of the external symbol names defined by all the other members. After you update any
other members, you need to update ™ . SYMDEF' so that it will summarize the other members properly.
Thisis done by running ther anl i b program:

ranli b archivefile

Normally you would put this command in the rule for the archive file, and make al the members of the
archive file dependencies of that rule. For example,

| i bf oo.a: |ibfoo.a(x.0) |ibfoo.a(y.o)
ranlib |ibfoo.a

The effect of thisisto update archive members ™ x. o' , " y. o', etc., and then update the symbol
directory member ©= . SYMDEF' by running r anl i b. The rulesfor updating the members are not
shown here; most likely you can omit them and use the implicit rule which copiesfilesinto the archive, as
described in the preceding section.

Thisis not necessary when using the GNU ar program, which updatesthe ™ . SYMDEF' member
automatically.

Dangers When Using Archives

It isimportant to be careful when using parallel execution (the-j switch; see section Parallel Execution)

and archives. If multiplear commands run at the same time on the same archive file, they will not know
about each other and can corrupt thefile.

Possibly afuture version of make will provide a mechanism to circumvent this problem by serializing all
commands that operate on the same archive file. But for the time being, you must either write your
makefiles to avoid this problem in some other way, or not use- j .

Suffix Rules for Archive Files

Y ou can write a special kind of suffix rule for dealing with archive files. See section Old-Fashioned Suffix
Rules, for afull explanation of suffix rules. Archive suffix rules are obsolete in GNU make, because
pattern rules for archives are amore general mechanism (see section Implicit Rule for Archive Member
Targets). But they are retained for compatibility with other makes.

To write asuffix rule for archives, you simply write a suffix rule using the target suffix ".a (the usual
suffix for archive files). For example, hereis the old-fashioned suffix rule to update a library archive from
C sourcefiles:

. C.a:
$(CC) $(CFLAGS) $(CPPFLAGS) -c $< -0 $*.0
$(AR) r $@%*.0
$(RM $*.0

Thisworksjust asif you had written the pattern rule:

(%0): %c
$(CC) $(CFLAGS) $(CPPFLAGS) -c $< -0 $*.0
$(AR) r $@%$*.0
$(RM $*.0

Infact, thisisjust what nake doeswhen it sees a suffix rule with ".a as the target suffix. Any
double-suffix rule ".x.a is converted to a pattern rule with the target pattern "(%.0)' and a dependency
pattern of "%.x'.

Since you might want to use ".a as the suffix for some other kind of file, make also converts archive
suffix rules to pattern rules in the normal way (see section Old-Fashioned Suffix Rules). Thusa

double-suffix rule ".x.a produces two pattern rules: "(%.0): %.x" and "%.a %.X'.

Features of GNU nmake

Hereisasummary of the features of GNU rmake, for comparison with and credit to other versions of
make. We consider the features of make in 4.2 BSD systems as a baseline. If you are concerned with
writing portable makefiles, you should use only the features of make not listed here or in section
Incompatibilities and Missing Features.

Many features come from the version of make in System V.

« TheVPATH variable and its special meaning. See section Searching Directories for Dependencies.
Thisfeature existsin System V nmake, but is undocumented. It is documented in 4.3 BSD naeke
(which saysit mimics System V's VPATH feature).

« Included makefiles. See section Including Other Makefiles. Allowing multiple filesto be included
with asingle directiveisa GNU extension.

» Variables are read from and communicated via the environment. See section Variables from the
Environment.

« Options passed through the variable MAKEFLAGS to recursive invocations of make. See section
Communicating Options to a Sub-nake.

« The automatic variable $%is set to the member name in an archive reference. See section
Automatic Variables.

The automatic variables $@ $* , $<, $% and $? have corresponding formslike $(@) and
$(@) . We have generalized thisto $” as an obvious extension. See section Automatic Variables.

Substitution variable references. See section Basics of Variable References.

The command-line options "-b' and "-m', accepted and ignored. In System V make, these options
actually do something.

Execution of recursive commands to run make viathe variable MAKE even if -n', "-q' or "-t'is
specified. See section Recursive Use of nake.

Support for suffix ".a in suffix rules. See section Suffix Rulesfor Archive Files. Thisfeatureis
obsolete in GNU nake, because the general feature of rule chaining (see section Chains of Implicit
Rules) alows one pattern rule for installing members in an archive (see section Implicit Rule for
Archive Member Targets) to be sufficient.

The arrangement of lines and backslash-newline combinations in commands is retained when the

commands are printed, so they appear as they do in the makefile, except for the stripping of initia
whitespace.

The following features were inspired by various other versions of make. In some casesit is unclear
exactly which versions inspired which others.

Pattern rules using "%'. This has been implemented in several versions of make. We're not sure who
invented it first, but it's been spread around a bit. See section Defining and Redefining Pattern

Rules.
Rule chaining and implicit intermediate files. This was implemented by Stu Feldman in hisversion
of make for AT& T Eighth Edition Research Unix, and later by Andrew Hume of AT& T Bell Labs

in hisnk program (where he termsit "transitive closure™"). We do not really know if we got this
from either of them or thought it up ourselves at the same time. See section Chains of Implicit

Rules.

The automatic variable $” containing alist of al dependencies of the current target. We did not
invent this, but we have no ideawho did. See section Automatic Variables. The automatic variable

$+ isasimple extension of $”.

The"what if" flag ("-W' in GNU make) was (as far as we know) invented by Andrew Humein nk.
See section Instead of Executing the Commands.

The concept of doing several things at once (parallelism) exists in many incarnations of mrake and
similar programs, though not in the System V or BSD implementations. See section Command
Execution.

Modified variable references using pattern substitution come from SunOS 4. See section Basics of
Variable References. This functionality was provided in GNU make by the pat subst function
before the aternate syntax was implemented for compatibility with SunOS 4. It is not altogether
clear who inspired whom, since GNU nake had pat subst before SunOS 4 was rel eased.

The specia significance of "+' characters preceding command lines (see section Instead of
Executing the Commands) is mandated by |EEE Standard 1003.2-1992 (POSIX.2).

The "+=' syntax to append to the value of avariable comes from SunOS 4 nake. See section
Appending More Text to Variables.

The syntax "archive(meml1 mem2...)' to list multiple membersin asingle archive file comes from
SunOS 4 make. See section Archive Members as Targets.

The- i ncl ude directive to include makefiles with no error for a nonexistent file comes from
SunOS 4 nmeke. (But note that SUnOS 4 mak e does not allow multiple makefiles to be specified in
one-i ncl ude directive.)

The remaining features are inventions new in GNU make:

Usethe "-v' or "--version' option to print version and copyright information.
Usethe "-h' or "--help’ option to summarize the optionsto nake.
Simply-expanded variables. See section The Two Flavors of Variables.

Pass command-line variable assignments automatically through the variable MAKE to recursive
mak e invocations. See section Recursive Use of nake.

Use the "-C' or "--directory’ command option to change directory. See section Summary of Options.
Make verbatim variable definitions with def i ne. See section Defining Variables Verbatim.

Declare phony targets with the special target . PHONY. Andrew Hume of AT&T Bell Labs
implemented a similar feature with a different syntax in hisnk program. This seems to be a case of
parallel discovery. See section Phony Targets.

Manipulate text by calling functions. See section Functions for Transforming Text.

Usethe "-0' or "--old-file' option to pretend a file's modification-time is old. See section Avoiding
Recompilation of Some Files.

Conditional execution. This feature has been implemented numerous times in various versions of
make; it seems a natural extension derived from the features of the C preprocessor and similar
macro languages and is not a revolutionary concept. See section Conditional Parts of Makefiles.

Specify a search path for included makefiles. See section Including Other Makefiles.

Specify extra makefiles to read with an environment variable. See section The Variable
MAKEFI LES.

Strip leading sequences of "./' from filenames, sothat . /file' and fil e' areconsideredto
be the samefile.

Use a specia search method for library dependencies written in the form “-Iname’. See section
Directory Search for Link Libraries.

Allow suffixes for suffix rules (see section Old-Fashioned Suffix Rules) to contain any characters.
In other versions of make, they must begin with "." and not contain any /' characters.

Keep track of the current level of make recursion using the variable MAKELEVEL . See section
Recursive Use of make.

Specify static pattern rules. See section Static Pattern Rules.
Provide selective vpat h search. See section Searching Directories for Dependencies.

Provide computed variable references. See section Basics of Variable References.
Update makefiles. See section How Makefiles Are Remade. System V nmake hasavery, very

l[imited form of this functionality in that it will check out SCCS files for makefiles.
« Various new built-in implicit rules. See section Catalogue of Implicit Rules.

« Thebuilt-in variable MAKE_VERSION' gives the version number of make.

Incompatibilities and Missing Features

The make programsin various other systems support afew features that are not implemented in GNU
make. The POSIX.2 standard (IEEE Standard 1003.2-1992) which specifies make does not require any of
these features.

« A target of the form “file((entry))' stands for amember of archive file file. The member is chosen,
not by name, but by being an object file which defines the linker symbol entry. This feature was not
put into GNU make because of the nonmodularity of putting knowledge into make of the interna
format of archive file symbol tables. See section Updating Archive Symbol Directories.

« Suffixes (used in suffix rules) that end with the character "~ have a special meaning to System V
nmake; they refer to the SCCSfile that corresponds to the file one would get without the "~'. For
example, the suffix rule ".c~.0' would make thefile " n. o' from the SCCSfile" s. n. c¢' . For
complete coverage, awhole series of such suffix rulesis required. See section Old-Fashioned Suffix

Rules. In GNU nake, this entire series of casesis handled by two pattern rules for extraction from
SCCS, in combination with the general feature of rule chaining. See section Chains of Implicit
Rules.

« InSystemV nmake, the string "$$@" has the strange meaning that, in the dependencies of arule
with multiple targets, it stands for the particular target that is being processed. Thisis not defined in
GNU make because "$$ should always stand for an ordinary "$. It is possible to get this
functionality through the use of static pattern rules (see section Static Pattern Rules). The System V

make rule:

$(targets): $$@o lib.a
can be replaced with the GNU make static pattern rule:

$(targets): % %o lib.a

« InSystemV and 4.3 BSD nake, filesfound by VPATH search (see section Searching Directories
for Dependencies) have their names changed inside command strings. We fedl it is much cleaner to
aways use automatic variables and thus make this feature obsol ete.

« Insome Unix makes, the automatic variable $* appearing in the dependencies of arule has the
amazingly strange "feature" of expanding to the full name of the target of that rule. We cannot
Imagine what went on in the minds of Unix make developersto do this; it is utterly inconsistent
with the normal definition of $* .

« Insome Unix makes, implicit rule search (see section Using Implicit Rules) is apparently done for
all targets, not just those without commands. This means you can do:

f 00. 0:
cc -c foo.c

and Unix make will intuit that * f 00. 0' dependson " f 0o. ¢' . Wefeel that such usageis broken.
The dependency properties of make are well-defined (for GNU nmake, at least), and doing such a
thing ssimply does not fit the model.

o GNU nmake does not include any built-in implicit rules for compiling or preprocessing EFL
programs. If we hear of anyone who isusing EFL, we will gladly add them.

» It appearsthat in SVR4 make, a suffix rule can be specified with no commands, and it is treated as
if it had empty commands (see section Using Empty Commands). For example:

. C. a:

will overridethe built-in ™ . c. a' suffix rule. Wefed that it is cleaner for arule without commands
to always ssimply add to the dependency list for the target. The above example can be easily
rewritten to get the desired behavior in GNU make:

.c.a: ;
« Some versions of make invoke the shell with the "-€' flag, except under "-k' (see section Testing the
Compilation of a Program). The "-€' flag tells the shell to exit as soon as any program it runs returns

anonzero status. We fed it is cleaner to write each shell command line to stand on its own and not
require this special treatment.

Makefile Conventions

This chapter describes conventions for writing the Makefiles for GNU programs.

General Conventions for Makefiles

Every Makefile should contain this line:

SHELL = /bin/sh

to avoid trouble on systems where the SHEL L variable might be inherited from the environment. (Thisis
never aproblem with GNU nake.)

Different make programs have incompatible suffix lists and implicit rules, and this sometimes creates
confusion or misbehavior. So it isagood ideato set the suffix list explicitly using only the suffixes you
need in the particular Makefile, like this:

. SUFFI XES:
.SUFFI XES: .c .0

Thefirst line clears out the suffix list, the second introduces all suffixes which may be subject to implicit
rulesin this Makefile.

Don't assumethat * . ' isinthe path for command execution. When you need to run programs that are a
part of your package during the make, please make surethat it uses ™ . /' if the program is built as part of
themakeor " $(srcdir) /' if thefileisan unchanging part of the source code. Without one of these
prefixes, the current search path is used.

Thedistinction between ™ . /' and " $(srcdir) /"' isimportant when using the --srcdir' option to
“configure'. A ruleof theform:
foo.1l : foo.man sedscri pt

sed -e sedscript foo.man > foo.1

will fail when the current directory is not the source directory, because " f oo. man' and " sedscri pt'
are not in the current directory.

When using GNU make, relying on "VPATH' to find the source file will work in the case where thereisa
single dependency file, sincethe " make' automatic variable "$<' will represent the source file wherever
itis. (Many versions of make set "$<' only inimplicit rules.) A makefile target like

foo.o : bar.c

$(CO -1. -1$(srcdir) $(CFLAGS) -c bar.c -o foo.o0
should instead be written as
foo.o : bar.c

$(CC -I. -1$(srcdir) $(CFLAGS) -c $< -0 $@

in order to allow "VPATH' to work correctly. When the target has multiple dependencies, using an explicit
"$(sredir)' isthe easiest way to make the rule work well. For example, the target above for * f 0o. 1" is
best written as:

foo.1l : foo.man sedscript
sed -e $(srcdir)/sedscript $(srcdir)/foo.man > $@

Utilities in Makefiles

Write the Makefile commands (and any shell scripts, suchasconfi gure)toruninsh, notincsh.
Don't use any special features of ksh or bash.

Theconf i gur e script and the Makefile rules for building and installation should not use any utilities
directly except these:

cat cnp cp echo egrep expr grep

In nkdir mv pwd rmrndir sed test touch

Stick to the generally supported options for these programs. For example, don't use "mkdir -p', convenient
as it may be, because most systems don't support it.

The Makefile rules for building and installation can also use compilers and related programs, but should
do so vianmake variables so that the user can substitute aternatives. Here are some of the programs we
mean:

ar bison cc flex install |Id |ex
make makeinfo ranlib texi 2dvi yacc

Use the following make variables:

$(AR) $(BISON) $(CC) $(FLEX) $(INSTALL) $(LD) $(LEX)
$(MAKE) $(MAKEI NFO) $(RANLI B) $(TEXI 2DVI) $(YACO)

When you user anl i b, you should make sure nothing bad happens if the system does not haver anl i b.
Arrange to ignore an error from that command, and print a message before the command to tell the user
that failure of ther anl i b command does not mean a problem.

If you use symbolic links, you should implement afallback for systems that don't have symbolic links.

It is ok to use other utilities in Makefile portions (or scripts) intended only for particular systems where
you know those utilities to exist.

Standard Targets for Users

All GNU programs should have the following targetsin their Makefiles:

al’
Compile the entire program. This should be the default target. Thistarget need not rebuild any
documentation files; Info files should normally be included in the distribution, and DV files should
be made only when explicitly asked for.

“install’
Compile the program and copy the executables, libraries, and so on to the file names where they
should reside for actual use. If thereisasimpletest to verify that a program is properly installed,
thistarget should run that test. If possible, writethei nst al | target rule so that it does not modify
anything in the directory where the program was built, provided "'make all' has just been done. This
is convenient for building the program under one user name and installing it under another. The
commands should create all the directoriesin which files are to be installed, if they don't already
exist. Thisincludes the directories specified as the values of the variablespr ef i x and
exec_prefix,aswell asall subdirectoriesthat are needed. One way to do thisis by means of an
i nst al | di rs target as described below. Use "-' before any command for installing a man page,
so that make will ignore any errors. Thisisin case there are systems that don't have the Unix man
page documentation system installed. The way to install Info filesisto copy them into
"$(infodir)" with$(| NSTALL_DATA) (seesection Variablesfor Specifying Commands),
andthenrunthei nstal | -i nf o programif itispresent.i nst al | - i nf o isascript that edits
thelnfo " di r' fileto add or update the menu entry for the given Info file; it will be part of the
Texinfo package. Hereisasample ruleto install an Info file:

$(infodir)/foo.info: foo.info
There may be a newer info file in . than in srcdir.
-if test -f foo.info; then d=.; \
el se d=$(srcdir); fi; \
$(I NSTALL_DATA) $$d/foo.info $@ \

Run install-info only if it exists.
Use "if' instead of just prepending -' to the
line so we notice real errors frominstall-info.

W use " $(SHELL) -c' because sone shells do not
fail gracefully when there is an unknown conmmand.
if $(SHELL) -c '"install-info --version' \
>/ dev/nul |l 2>&1; then \
install-info --infodir=$(infodir) $$d/foo.info; \
el se true; fi

“uninstall’

Delete al theinstalled files that the “install’ target would create (but not the noninstalled files such
as ‘make all' would create). This rule should not modify the directories where compilation is done,
only the directories where files are installed.

“clean'
Delete dl files from the current directory that are normally created by building the program. Don't
delete the files that record the configuration. Also preserve files that could be made by building, but

normally aren't because the distribution comes with them. Delete " . dvi ' fileshereif they are not
part of the distribution.

“distclean’
Delete all files from the current directory that are created by configuring or building the program. If

you have unpacked the source and built the program without creating any other files, ‘'make
distclean’ should leave only the files that were in the distribution.

"mostlyclean’

Like "clean’, but may refrain from deleting afew files that people normally don't want to recompile.
For example, the "mostlyclean’ target for GCC does not delete " | i bgcc. a' , because recompiling
itisrarely necessary and takes alot of time.

“maintai ner-clean’
Delete amost everything from the current directory that can be reconstructed with this Makefile.
Thistypically includes everything deleted by di st cl ean, plusmore: C source files produced by
Bison, tags tables, Info files, and so on. The reason we say "almost everything” isthat “make
maintainer-clean' should not delete ™ conf i gure' evenif " confi gure' canberemadeusing a
rule in the Makefile. More generally, “make maintainer-clean' should not delete anything that needs
toexistinorder torun” confi gur e' and then begin to build the program. Thisisthe only
exception; mai nt ai ner - cl ean should delete everything else that can be rebuilt. The
"maintainer-clean’ isintended to be used by a maintainer of the package, not by ordinary users. You
may need special tools to reconstruct some of the files that “make maintainer-clean’' deletes. Since
these files are normally included in the distribution, we don't take care to make them easy to
reconstruct. If you find you need to unpack the full distribution again, don't blame us. To help make
users aware of this, the commands for mai nt ai ner - cl ean should start with these two:

@cho "This command is intended for nmaintainers to use;"”
@cho "it deletes files that may require special tools to rebuild.

"TAGS

“info'

“avi'

“dist’

Update atags table for this program.

Generate any Info files needed. The best way to write the rulesis as follows:

info: foo.info

foo.info: foo.texi chapl.texi chap2.texi
$(MAKEI NFO) $(srcdir)/foo.texi

Y ou must define the variable MAKEI NFOin the Makefile. It should run the makei nf o program,
which is part of the Texinfo distribution.

Generate DV filesfor all TeXinfo documentation. For example:

dvi : foo. dvi

foo.dvi: foo.texi chapl.texi chap2.texi
$(TEXI 2DVI) $(srcdir)/foo.texi

Y ou must define the variable TEXI 2DVI in the Makefile. It should run the program t exi 2dvi ,
which is part of the Texinfo distribution. Alternatively, write just the dependencies, and allow GNU
Make to provide the command.

Create adistribution tar file for this program. The tar file should be set up so that the file namesin
the tar file start with a subdirectory name which is the name of the package it isadistribution for.
This name can include the version number. For example, the distribution tar file of GCC version
1.40 unpacks into a subdirectory named " gcc- 1. 40" . The easiest way to do thisisto create a
subdirectory appropriately named, usel n or cp to install the proper filesinit, and thent ar that
subdirectory. Thedi st target should explicitly depend on all non-source filesthat are in the
distribution, to make sure they are up to date in the distribution. See section "Making Releases' in
GNU Coding Standards.

“check’

Perform self-tests (if any). The user must build the program before running the tests, but need not
install the program; you should write the self-tests so that they work when the program is built but
not installed.

The following targets are suggested as conventional names, for programs in which they are useful.
I nstal | check

Perform installation tests (if any). The user must build and install the program before running the
tests. Y ou should not assumethat * $(bi ndi r) ' isinthe search path.

installdirs

It's useful to add atarget named “installdirs' to create the directories where files are installed, and
their parent directories. Thereisascript called " nki nst al | di rs' whichisconvenient for this;
find it in the Texinfo package. Y ou can use arule like this:

Make sure all installation directories (e.g. $(bindir))
actually exist by making themif necessary.
installdirs: nkinstalldirs
$(srcdir)/nkinstalldirs $(bindir) $(datadir) \
$(libdir) $(infodir) \
$(mandir)
This rule should not modify the directories where compilation is done. It should do nothing but
create installation directories.

Variables for Specifying Commands

Makefiles should provide variables for overriding certain commands, options, and so on.

In particular, you should run most utility programs via variables. Thus, if you use Bison, have avariable
named Bl SON whose default value is set with "BISON = bison’, and refer to it with $(Bl SON) whenever
you need to use Bison.

File management utilitiessuch as| n, r m mv, and so on, need not be referred to through variablesin this
way, since users don't need to replace them with other programs.

Each program-name variable should come with an options variable that is used to supply options to the
program. Append "FLAGS to the program-name variable name to get the options variable name--for
example, Bl SONFLAGS. (The name CFLAGS is an exception to thisrule, but we keep it becauseitis
standard.) Use CPPFLAGS in any compilation command that runs the preprocessor, and use LDFLAGS in
any compilation command that does linking aswell asin any direct use of | d.

If there are C compiler options that must be used for proper compilation of certain files, do not include
them in CFLAGS. Users expect to be able to specify CFLAGS freely themselves. Instead, arrange to pass
the necessary options to the C compiler independently of CFLAGS, by writing them explicitly in the
compilation commands or by defining an implicit rule, like this:

CFLAGS = -g
ALL CFLAGS = -I. $(CFLAGS)
.C.O0:
$(CO -c $(CPPFLAGS) $(ALL_CFLAGS) $<

Do include the "-g' option in CFLAGS, because that is not required for proper compilation. You can
consider it adefault that is only recommended. If the package is set up so that it is compiled with GCC by
default, then you might as well include "-O' in the default value of CFLAGS as well.

Put CFLAGS last in the compilation command, after other variables containing compiler options, so the
user can use CFLAGS to override the others.

Every Makefile should define the variable | NSTALL, which is the basic command for installing afile into
the system.

Every Makefile should also define the variables | NSTALL _PROGRAMand | NSTALL_DATA. (The
default for each of these should be $(1 NSTALL) .) Then it should use those variables as the commands
for actual installation, for executables and nonexecutables respectively. Use these variables as follows:

$(| NSTALL_PROGRAM) foo $(bindir)/foo
$(| NSTALL_DATA) libfoo.a $(1ibdir)/libfoo.a

Always use afile name, not a directory name, as the second argument of the installation commands. Use a
separate command for each file to be installed.

Variables for Installation Directories

Installation directories should always be named by variables, so it is easy to instal in a nonstandard place.
The standard names for these variables are described below. They are based on a standard filesystem
layout; variants of it are used in SVR4, 4.4BSD, Linux, Ultrix v4, and other modern operating systems.

These two variables set the root for the installation. All the other installation directories should be
subdirectories of one of these two, and nothing should be directly installed into these two directories.
“prefix’
A prefix used in constructing the default values of the variables listed below. The default value of
prefix shouldbe™ /usr/ | ocal ' When building the complete GNU system, the prefix will be
empty and " / usr' will beasymboliclinkto ™ /" .
“exec_prefix’
A prefix used in constructing the default values of some of the variables listed below. The default
value of exec_pr ef i x should be $(pr ef i x) . Generally, $(exec_pr efi x) isused for

directories that contain machine-specific files (such as executables and subroutine libraries), while
$(prefix) isuseddirectly for other directories.

Executable programs are installed in one of the following directories.

“bindir'
The directory for installing executable programs that users can run. This should normally be
“/Jusr/local/bin', butwriteitas” $(exec_prefix)/bin".

“shindir’
The directory for installing executable programs that can be run from the shell, but are only

generally useful to system administrators. This should normally be ™ / usr/ | ocal / sbi n' , but
writeitas” $(exec_prefi x)/sbin'.

“libexecdir’
The directory for installing executable programs to be run by other programs rather than by users.

Thisdirectory should normally be " / usr /| ocal /| i bexec' , but writeit as
“$(exec_prefix)/libexec'.

Datafiles used by the program during its execution are divided into categories in two ways.

« Somefiles are normally modified by programs; others are never normally modified (though users
may edit some of these).

« Somefiles are architecture-independent and can be shared by all machines at a site; some are
architecture-dependent and can be shared only by machines of the same kind and operating system;
others may never be shared between two machines.

Thismakesfor six different possibilities. However, we want to discourage the use of
architecture-dependent files, aside from of object filesand libraries. It is much cleaner to make other data
files architecture-independent, and it is generally not hard.

Therefore, here are the variables makefiles should use to specify directories:

“datadir'
The directory for installing read-only architecture independent datafiles. This should normally be
“/usr/local/share', butwriteitas™ $(prefi x)/share'.Asaspecia exception, see
“$(infodir)' and $(includedir)' below.

“sysconfdir’

The directory for installing read-only datafiles that pertain to a single machine--that is to say, files
for configuring a host. Mailer and network configuration files, " / et ¢/ passwd' , and so forth
belong here. All the filesin this directory should be ordinary ASCII text files. This directory should
normally be "/ usr/ | ocal / et c' , butwriteitas™ $(prefi x)/etc'.Donotinstal
executables in this directory (they probably belongin ™ $(1i bexecdir)' or $(sbindir))"'.
Also do not install files that are modified in the normal course of their use (programs whose purpose
isto change the configuration of the system excluded). Those probably belong in
“$(localstatedir)'.

“Sharedstatedir'

The directory for installing architecture-independent data files which the programs modify while
they run. This should normally be " / usr/ | ocal / com , but writeitas™ $(prefi x)/ com .

“localstatedir'
The directory for installing data files which the programs modify while they run, and that pertain to
one specific machine. Users should never need to modify filesin this directory to configure the
package's operation; put such configuration information in separate filesthat goin ~ dat adi r' or
"$(sysconfdir)'. $(local statedir)' shouldnormally be”/ usr/ | ocal /var' , but
writeitas” $(prefix)/var'.

“libdir'
The directory for object files and libraries of object code. Do not install executables here, they
probably belongin ™ $(1 i bexecdir)"' instead. Thevalueof | i bdi r should normally be
“lfusr/local/lib",butwriteitas” $(exec_prefix)/lib".

“infodir'
The directory for installing the Info files for this package. By default, it should be
“lusr/local/info',butitshouldbewrittenas™ $(prefix)/info'.

“includedir’

The directory for installing header files to be included by user programs with the C “#include
preprocessor directive. Thisshould normally be ™ / usr /1 ocal /i ncl ude' , but writeit as

“$(prefix)/include' . Most compilersother than GCC do not ook for header filesin
“/usr/local/include'.Soinstaling the header filesthisway isonly useful with GCC.
Sometimes this is not a problem because some libraries are only really intended to work with GCC.
But some libraries are intended to work with other compilers. They should install their header files
in two places, one specified by i ncl udedi r and one specified by ol di ncl udedi r.

“oldincludedir’

The directory for installing "#include' header files for use with compilers other than GCC. This
should normally be " / usr /i ncl ude' . The Makefile commands should check whether the value
of ol di ncl udedi r isempty. If itis, they should not try to use it; they should cancel the second
installation of the header files. A package should not replace an existing header in this directory
unless the header came from the same package. Thus, if your Foo package provides a header file
“foo. h',thenit should install the header filein the ol di ncl udedi r directory if either (1)
thereisno " f 0o. h' thereor (2) the f 0o. h' that exists came from the Foo package. To tell
whether " f 00. h' came from the Foo package, put a magic string in the file--part of a
comment--and grep for that string.

Unix-style man pages are installed in one of the following:
“mandir'
The directory for installing the man pages (if any) for this package. It should include the suffix for

the proper section of the manual--usually "1' for a utility. It will normally be
“/usr/local / man/ manl' , but you should writeitas™ $(prefi x) / man/ manl' .

"manldir’

The directory for installing section 1 man pages.
“man2dir’

The directory for installing section 2 man pages.

Use these names instead of "mandir’ if the package needsto install man pages in more than one
section of the manual. Don't make the primary documentation for any GNU softwar e be a man
page. Write a manual in Texinfo instead. Man pagesarejust for the sake of peoplerunning
GNU softwar e on Unix, which is a secondary application only.

“manext’

The file name extension for the installed man page. This should contain a period followed by the
appropriate digit; it should normally be ".1".

“manlext’

The file name extension for installed section 1 man pages.
“man2ext’

The file name extension for installed section 2 man pages.

Use these names instead of "manext’ if the package needs to install man pages in more than one
section of the manual.

And finally, you should set the following variable:

“sredir!
The directory for the sources being compiled. The value of this variable is normally inserted by the
conf i gur e shell script.

For example:

Common prefix for installation directories.

NOTE: This directory nust exist when you start the install.
prefix = /usr/|ocal

exec_prefix = $(prefix)

Where to put the executable for the command "gcc'.

bi ndir = $(exec_prefix)/bin

Where to put the directories used by the conpiler.

| i bexecdir = $(exec_prefix)/Ilibexec

Where to put the Info files.

infodir = $(prefix)/info

If your program installs a large number of files into one of the standard user-specified directories, it might
be useful to group them into a subdirectory particular to that program. If you do this, you should write the
I nstal | ruleto create these subdirectories.

Do not expect the user to include the subdirectory name in the value of any of the variables listed above.
The idea of having a uniform set of variable names for installation directoriesis to enable the user to
specify the exact same values for severa different GNU packages. In order for this to be useful, all the
packages must be designed so that they will work sensibly when the user does so.

Quick Reference

This appendix summarizes the directives, text manipulation functions, and special variables which GNU
mak e understands. See section Special Built-in Target Names, section Catalogue of Implicit Rules, and

section Summary of Options, for other summaries.

Hereisasummary of the directives GNU nake recognizes:
define variabl e
endef

Define amulti-line, recursively-expanded variable.
See section Defining Canned Command Sequences.

i fdef vari able
I fndef vari abl e

ifeq (a,b)
ifeqg "a" "b"
ifeqg 'a 'b’'

I fneq (a,b)

ifneq "a" "b"
ifneqg "a 'b
el se
endi f

Conditionally evaluate part of the makefile.
See section Conditional Parts of Makefiles.

i nclude file

Include another makefile.
See section Including Other M akefiles.

override variabl e = val ue
override variable : = val ue
override variabl e += val ue
override define variable
endef

Define avariable, overriding any previous definition, even one from the command line.
See section Theover ri de Directive.

export

Tell make to export all variablesto child processes by default.
See section Communicating Variables to a Sub-nake.

export variable

export variable = val ue
export variable := val ue
export variable += val ue
unexport variabl e

Tell make whether or not to export a particular variable to child processes.
See section Communicating Variablesto a Sub-make.

vpath pattern path

Specify a search path for files matching a %' pattern.
See section The vpat h Directive.

vpath pattern
Remove al search paths previously specified for pattern.
vpat h
Remove al search paths previously specified in any vpat h directive.

Here isasummary of the text manipulation functions (see section Functions for Transforming Text):

$(subst fromto,text)

Replace from with to in text.
See section Functions for String Substitution and Analysis.

$(pat subst pattern, repl acenent, text)
Replace words matching pattern with replacement in text.
See section Functions for String Substitution and Analysis.
$(strip string)

Remove excess whitespace characters from string.
See section Functions for String Substitution and Analysis.

$(findstring find,text)

Locate find in text.
See section Functions for String Substitution and Analysis.

$(filter pattern...,text)

Select words in text that match one of the pattern words.
See section Functions for String Substitution and Analysis.

$(filter-out pattern...,text)

Select words in text that do not match any of the pattern words.
See section Functions for String Substitution and Analysis.

$(sort list)

Sort the words in list lexicographically, removing duplicates.
See section Functions for String Substitution and Analysis.

$(dir nanes...)

Extract the directory part of each file name.
See section Functions for File Names.

$(notdir nanes...)

Extract the non-directory part of each file name.
See section Functions for File Names.

$(suffix nanes...)

Extract the suffix (the last "." and following characters) of each file name.
See section Functions for File Names.

$(basenane nanes...)

Extract the base name (name without suffix) of each file name.
See section Functions for File Names.

$(addsuffix suffix, nanmes...)

Append suffix to each word in names.
See section Functions for File Names.

$(addprefix prefix, nanes...)

Prepend prefix to each word in names.
See section Functions for File Names.

$(join listl, list2)
Join two parallel lists of words.

See section Functions for File Names.

$(word n,text)

Extract the nth word (one-origin) of text.
See section Functions for File Names.

$(words text)

Count the number of words in text.
See section Functions for File Names.

$(firstword nanes...)

Extract the first word of names.
See section Functions for File Names.

$(wi ldcard pattern...)

Find file names matching a shell file name pattern (not a %' pattern).
See section The Functionwi | dcar d.

$(shel | command)

Execute a shell command and return its output.
See section Theshel | _Function.

$(origin variable)
Return a string describing how the mak e variable variable was defined.
See section The or i gi_n_Function.

$(foreach var, words, text)

Evauate text with var bound to each word in words, and concatenate the results.
See section Thef or each Function.

Hereis a summary of the automatic variables. See section Automatic Variables, for full information.

$@

The file name of the target.

$%
The target member name, when the target is an archive member.

$<
The name of the first dependency.

$?
The names of all the dependencies that are newer than the target, with spaces between them. For
dependencies which are archive members, only the member named is used (see section Using neke
to Update Archive Files).

$/\

$+

The names of all the dependencies, with spaces between them. For dependencies which are archive
members, only the member named is used (see section Using nake to Update Archive Files). The

value of $” omits duplicate dependencies, while $+ retains them and preserves their order.

$*

The stem with which an implicit rule matches (see section How Patterns Match).
$(@)
$(@)

The directory part and the file-within-directory part of $@
$(*D)
$(*F)

The directory part and the file-within-directory part of $* .
$(%0)
$(%)

The directory part and the file-within-directory part of $%
$(<D)
$(<F)

The directory part and the file-within-directory part of $<.
$("D)
$("F)

The directory part and the file-within-directory part of $/.
$(+D)
$(+F)

The directory part and the file-within-directory part of $+.
$(?D)
$(?F)

The directory part and the file-within-directory part of $?.

These variables are used specialy by GNU nake:
MAKEFI LES

Makefiles to be read on every invocation of make.
See section The Variable MAKEFI LES.

VPATH

Directory search path for files not found in the current directory.
See section VPATH: Search Path for All Dependencies.

SHELL

The name of the system default command interpreter, usualy * / bi n/ sh' . You can set SHELL in
the makefile to change the shell used to run commands. See section Command Execution.

MAKE

The name with which mak e was invoked. Using this variable in commands has special meaning.
See section How the MAKE Variable Works.

MAKEL EVEL

The number of levels of recursion (sub-makes).
See section Communicating Variables to a Sub-make.

MAKEFLAGS

The flags given to make. Y ou can set thisin the environment or a makefile to set flags.
See section Communicating Options to a Sub-nake.

SUFFI XES
The default list of suffixes before make reads any makefiles.

Complex Makefile Example

Hereisthe makefile for the GNU t ar program. Thisisamoderately complex makefile.

Because it isthe first target, the default goal is "all'. An interesting feature of this makefileisthat
“testpad. h' isasourcefileautomatically created by thet est pad program, itself compiled from
"testpad.c'.

If you type ‘make' or ‘make al’, then make createsthe "t ar' executable, the r nmt' daemon that
provides remote tape access, and the "t ar . i nf o' Infofile.

If you type ‘'makeinstall’, then make not only creates tar', rnt',and tar.info',butaso
installs them.

If you type "make clean’, then make removesthe ".0' files,andthe "tar', rm', testpad',
“testpad. h',and core' files.

If you type "make distclean’, then nake not only removes the same files as does "make clean’ but also the
"TAGS' , Makefile',and config.status' files. (Althoughitisnot evident, this makefile (and
“config. status')isgenerated by the user with theconf i gur e program, which is provided in the
t ar distribution, but is not shown here.)

If you type "'make realclean’, then mak e removes the same files as does "make distclean’ and also removes
the Info files generated from "t ar . t exi nf o' .

In addition, there aretargets shar and di st that create distribution kits.
Generated automatically from Makefile.in by configure.

Un*x Makefile for GNU tar program
Copyright (C 1991 Free Software Foundation, Inc.

This programis free software; you can redistribute

it and/or nodify it under the terns of the G\U
General Public License ...

SHELL = /bin/sh

Start of system configuration section.
srcdir = .

|f you use gcc, you should either run the

fixincludes script that comes with it or el se use
gcc with the -traditional option. Oherw se ioctl
calls will be conpiled incorrectly on sone systens.
CC = gcc -0

YACC = bison -y

| NSTALL = /usr/local/bin/install -c

| NSTALLDATA = /usr/local/bin/install -c -m 644

Thi ngs you m ght add to DEFS:

- DSTDC_HEADERS If you have ANSI C headers and
| i braries.

- DPCSI X I f you have POCSI X. 1 headers and
| i braries.

- DBSD4 2 I f you have sys/dir.h (unless

you use -DPOSI X), sys/file.h,

and st _blocks in “struct stat'.
- DUSG I f you have System V/ ANSI C

string and nenory functions

and headers, sys/sysmacros.h,

fcntl.h, getcwd, no vall oc,

and ndir.h (unless

you use - DDI RENT).

- DNO_MEMORY_H | f USG or STDC HEADERS but do not
I ncl ude nmenory. h.

- DDI RENT I f USG and you have dirent.h
I nstead of ndir. h.

- DSI GTYPE=i nt I f your signal handlers
return int, not void.

- DNO_MT1 O If you lack sys/ntio.h
(magt ape ioctls).

- DNO REMOTE If you do not have a renote shel
or rexec.

- DUSE_REXEC To use rexec for renote tape
operations instead of
forking rsh or rensh.

- DVPRI NTF_M SSI NG I f you lack vprintf function
(but have _doprnt).

- DDOPRNT_M SSI NG I f you | ack _doprnt function.

Al so need to define
- DVPRI NTF_M SSI NG

HFHEHFHFFHFHFTHFTHAFEHAFTHFEHRFHRFHHFHHHHHHFHHH

- DFTI ME_M SSI NG If you lack ftinme systemcall.

- DSTRSTR_M SSI NG If you lack strstr function.

- DVALLOC M SSI NG If you lack valloc function.

- DMKDI R_M SSI NG If you lack nkdir and

rnmdir system call s.

- DRENAME_M SSI NG If you lack renane systemcall.
-DFTRUNCATE_M SSING If you lack ftruncate

systemcall.

-DV7 On Version 7 Unix (not

tested in a long tine).

- DEMJUL_OPEN3 If you lack a 3-argunent version
of open, and want to enulate it
with systemcalls you do have.

- DNO_OPEN3 I f you | ack the 3-argunent open
and want to disable the tar -k
option instead of enul ati ng open.
- DXENI X I f you have sys/inode.h

and need it 94 to be included.
DEFS = -DSI GTYPE=i nt -DDI RENT - DSTRSTR_M SSI NG \

- DVPRI NTF_M SSI NG - DBSD42
Set this to rtapelib.o unless you defined NO REMOTE,
in which case nake it enpty.
RTAPELIB = rtapelib.o

LI BS =

DEF AR FILE = /dev/rnt8

DEFBLOCKI NG = 20

CDEBUG = -g

CFLAGS = $(CDEBUG -I1. -1%$(srcdir) $(DEFS) \
- DDEF_AR _FI LER\ "$(DEF_AR_FILE)\ " \
- DDEFBL OCKI NG=$(DEFBLOCKI NG)

LDFLAGS = -g

prefix = /usr/|ocal

Prefix for each installed program
normally enpty or "@'.

bi nprefix =

The directory to install tar in.
bindir = $(prefix)/bin

The directory to install the info files in.
infodir = $(prefix)/info

End of system configuration section.

SRC1 = tar.c create.c extract.c buffer.c \

getol dopt.c update.c gnu.c nangle.c

SRC2 = wversion.c list.c nanmes.c diffarch.c \
port.c wldmat.c getopt.c

SRC3 = getoptl.c regex.c getdate.y

SRCS = $(SRC1) $(SRC2) $(SRC3)

OBJ1 = tar.o create.o extract.o buffer.o \
get ol dopt. o update.o gnu.o nmangle.o

OBJ2 = version.o list.o nanes.o diffarch.o \
port.o wildmat.o getopt.o

OBJ3 = getoptl.o regex.o getdate.o $(RTAPELI B)

OBJS = $(0BJ1) $(0BI2) $(0BII)

AUX = README COPYI NG ChangeLog Makefile.in \
makefil e. pc configure configure.in \
tar.texinfo tar.info* texinfo.tex \
tar.h port.h open3.h getopt.h regex.h \
rmt.h rnt.c rtapelib.c alloca.c \
med_dir.h ned_dir.c tcexparg.c \
| evel -0 | evel -1 backup-specs testpad.c

al | : tar rnt tar.info

tar: $(OBIS)
$(CC) $(LDFLAGS) -0 $@$(OBIS) $(LIBS)

rnt: rnt.c
$(CCO $(CFLAGS) $(LDFLAGS) -0 $@rm.c

tar.info: tar.texinfo
makei nfo tar.texinfo

install: all
$(I NSTALL) tar $(bindir)/$(binprefix)tar
-test ! -f rmt || $(INSTALL) rmt /etc/rnt
$(I NSTALLDATA) $(srcdir)/tar.info* $(infodir)

$(OBJIS): tar.h port.h testpad. h
regex.o buffer.o tar.o: regex.h
getdate.y has 8 shift/reduce conflicts.

testpad. h: testpad
./t est pad

testpad: testpad.o
$(CC -0 $@testpad.o

TAGS

cl ean:

$(SRCS)
et ags $(SRCS)

rm-f *. o tar rnm testpad testpad.h core

di stcl ean: cl ean

rm-f TAGS Makefile config.status

real cl ean: di stcl ean

rm-f tar.info*

shar: $(SRCS) $(AUX)

shar $(SRCS) $(AUX) | conpress \
> tar- sed -e '/version_string/!d \
-e "s/["0-9.]1*\([0-9.]1*\).*/\1/"
-eq
version.c .shar.Z

dist: $(SRCS) $(AUX)

tar. zoo:

echo tar- sed \
-e '"/version_string/!'d \
-e "s/[M0-9.]*\([0-9.]*\).*/\1/" \
_eq
version.c > .fnane
-rm-rf “cat .fnane
nkdir “cat .fnane
I n $(SRCS) $(AUX) “cat .fnanme’
-rm-rf “cat .fnane .fnanme
tar chzf "cat .fnane .tar.Z cat .fnane’

$(SRCS) $(AUX)
-rm-rf tnp.dir
-nkdir tnp.dir
-rmtar.zoo
for Xin $(SRCS) $(AUX) ; do \
echo $$X ; \
sed 's/$$/"M" 3$$X \
> tnp.dir/ $$X ; done
cd tnp.dir ; zoo aM../tar.zoo *
-rm-rf tnp.dir

\

Index of Concepts

#

%

(comments), in commands

(comments), in makefile

#i ncl ude

$, in function call

$,inrules
$, in variable name

$, in variable reference

% in pattern rules

% quoting in static pattern

% quoting in pat subst

% quoting invpat h

% quoting with \ (backslash), % quoting with\ (backslash), % quoting with\ (backslash)

* (wildcard character)

+, and def i ne
E

.V (RCSfile extension)

- (in commands)

-,anddefi ne
- -assune- new, - - assune- new

- - assune- new, and recursion

--assune-ol d,--assune-ol d

- -assune- ol d, and recursion

- - debug
--directory,--directory

--di rectory, andrecursion

--directory,and--print-directory

--dry-run,--dry-run,--dry-run
--environnent -overri des

--file,--file,--file

--fil e,andrecursion

--help
--ignore-errors,--ignore-errors
--include-dir,--include-dir
--]obs,--jobs

- -] obs, and recursion

--just-print,--just-print,--just-print

- - keep- goi ng, - - keep- goi ng, - - keep- goi ng

- -1 oad- aver age, - -| oad- aver age

--makefile,--makefile,--makefile

- -max- 1 oad, - - max-| oad

--newfile,--newfile

--new-fil e, andrecursion

--no-hbuiltin-rul es

- - no- keep- goi ng

--no-print-directory,--no-print-directory

--old-file,--old-file
--old-fil e, andrecursion

--print-data-base

--print-directory

--print-directory, andrecursion

--print-directory,disabling

--print-directory,and--directory

--question,--question

--qui et,--qui et

--recon,--recon,--recon

--silent,--sil ent

--stop
--touch, --touch

- -t ouch, and recursion

--version

- -war n-undefi ned-vari abl es
--what-if,--what-if
-b

- e (shell flag)
-f -f
- f , and recursion

1
—h

1
>

i, -
[, -

==l

- |, and archive update

-], and recursion
i! il i

- M(to compiler)

- MM(to GNU compiler)

-n,-Nn,-n

-0,-0

- 0, and recursion

Ay
&

wn

1
wn
1

S
t
-t , and recursion

1
(o
]

1
<

-W

=

=

- w, and recursion

- W and recursion
- w, disabling
-w,and-C

?

5 I 1=
o

3|’5"—‘
(@]
o

o lo
lo

. PRECI OUS intermediate files

g2 fa o o -
5

texi
texinfo
Axinfo
W
web

Y

. ¢ rules (double-colon)

¢ ? (wildcard character)

@(in commands)

@, and def i ne

[...] (wildcard characters)

\ (backdlash), for continuation lines
\ (backdlash), in commands
\ (backdlash), to quote %\ (backslash), to quote %\ (backslash), to quote %

. SYMDEF

al | (standard target)
appending to variables

ar

archive
archive member targets

archive symbol directory updating

archive,and - |

archive, and parallel execution

archive, suffix rule for

Arg list too long

arguments of functions

as, as
assembly, rule to compile

automatic generation of dependencies, automatic generation of dependencies

automatic variables

backquotes
backslash (\), for continuation lines

backdash (\), in commands
backdash (\), to quote % backslash (\), to quote % backslash (\), to quote %
basename

broken pipe
bugs, reporting

built-in special targets

C++, rule to compile

C, ruleto compile

CC, CC

cd (shell command), cd (shell command)
chains of rules

check (standard target)

cl ean (standard target)

cl ean target, cl ean target

cleaning up
cl obber (standard target)

€0, co

combining rules by dependency

command line variable definitions, and recursion

command line variables

commands
commands, backslash (\) in
commands, comments in

commands, echoing

commands, empty

commands, errorsin

commands, execution

commands, execution in parallel

commands, expans on

commands, how to write

commands, instead of executing

commands, introduction to

commands, quoting newlinesin

commands, sequences of

comments, in commands

comments, in makefile

compatibility

compatibility in exporting

compilation, testing

computed variable name

conditionals
continuation lines

conventions for makefiles

ctangle, ctangle

cweave, cweave

deducing commands (implicit rules)
default goal, default goal
default makefile name

default rules, |ast-resort

defining variables verbatim
deletion of target files, deletion of target files
dependencies

dependencies, automatic generation, dependencies, automatic generation

dependencies, introduction to

dependencies, list of all

dependencies, list of changed

dependencies, varying (static pattern)
dependency

dependency pattern, implicit

dependency pattern, static (not implicit)

directive
directories, printing them

directories, updating archive symbol

directory part
directory search (VPATH)
directory search (VPATH), and implicit rules

directory search (VPATH), and link libraries
directory search (VPATH), and shell commands
di st (standard target)

di st cl ean (standard target)

dollar sign ($), in function call

dollar sign ($), in rules

dollar sign ($), in variable name

dollar sign ($), in variable reference

double-colon rules

duplicate words, removing

E2BIG

echoing of commands
editor

Emacs (M x conpi |l e)
empty commands

empty targets

environment
environment, and recursion

environment, SHELL in

errors (in commands)

errors with wildcards

execution, in parallel

execution, instead of

execution, of commands

exit status (errors)

explicit rule, definition of

exporting variables

77,177
features of GNU nake
features, missing

file name functions

file name of makefile

file name of makefile, how to specify

file name prefix, adding

file name suffix

file name suffix, adding

file name with wildcards

file name, basename of

file name, directory part

file name, nondirectory part

files, assuming new

files, assuming old

files, avoiding recompilation of

files, intermediate

filtering out words

filtering words

finding strings

flags
flags for compilers

flavors of variables
FORCE

force targets
Fortran, rule to compile

functions

functions, for file names

functions, for text

functions, syntax of

at+, g++

gcc

generating dependencies automatically, generating dependencies automatically
get, get

globbing (wildcards)

goal

goal, default, goal, default

goal, how to specify

home directory

| EEE Standard 1003.2

implicit rule

implicit rule, and directory search
implicit rule, and VPATH
implicit rule, definition of

implicit rule, how to use

implicit rule, introduction to

implicit rule, predefined

implicit rule, search algorithm

including (MAKEFI LES variable)

including other makefiles

incompatibilities

Info, rule to format
i nst al | (standard target)

intermediate files

intermediate files, preserving
interrupt

[ob slots
job dots, and recursion

jobs, limiting based on load
joining lists of words

killing (interruption)

|ast-resort default rules
Id
lex, lex

Lex, ruleto run

libraries for linking, directory search

library archive, suffix rulefor
limiting jobs based on |oad
link libraries, and directory search

linking, predefined rule for

lint
| int,ruletorun

list of all dependencies

list of changed dependencies

load average
loops in variable expansion

| pr _(shell command), | pr (shell command)

m2c

macro

nmake depend
makefile
makefile name

makefile name, how to specify

makefile rule parts
makefile, and MAKEFI LES variable
makefile, conventions for

makefile, how make processes

makefile, how to write

makefile, including

makefile, overriding

makefile, remaking of

makefile, ssimple

makeinfo, makeinfo

match-anything rule

match-anything rule, used to override

missing features

mistakes with wildcards

modified variable reference

Modula-2, rule to compile

nost | ycl ean (standard target)

multiple rules for one target

multiple rulesfor onetarget (: :)

multiple targets

multiple targets, in pattern rule

name of makefile

name of makefile, how to specify

nested variable reference

newline, quoting, in commands

newline, quoting, in makefile

nondirectory part

obj
OBJ

OBJECTS

obj ect s
oBJS

obj s
old-fashioned suffix rules

options
options, and recursion

options, setting from environment

options, setting in makefiles

order of pattern rules

origin of variable

overriding makefiles

overriding variables with arguments

overriding withoverri de

parallel execution

parallel execution, and archive update

parts of makefile rule

Pascal, rule to compile

pattern rule
pattern rules, order of

pattern rules, static (not implicit)

pattern rules, static, syntax of
PC, pc

phony targets

pitfalls of wildcards
portability

POSIX

POSIX.2

precious targets

prefix, adding

preserving intermediate files
preserving with . PRECI QUS, preserving with . PRECI QUS
print (standard target)
print target, print target
printing directories

printing of commands

problems and bugs, reporting

problems with wildcards

processing a makefile

question mode

quoting % in static pattern

quoting % in pat subst

guoting % invpat h
quoting newline, in commands

quoting newline, in makefile

Ratfor, rule to compile

RCS, rule to extract from
READVE
r eal cl ean (standard target)

recompilation

recompilation, avoiding

recording events with empty targets

recursion
recursion, and - C

recursion, and - f

recursion, and - j

recursion, and - 0

recursion, and - t

recursion, and - W

recursion, and - w

recursion, and command line variable definitions

recursion, and environment

recursion, and MAKE variable
recursion, and MAKEFI| LES variable
recursion, and options

recursion, and printing directories

recursion, and variables

recursion, level of

recursive variable expansion, recursive variable expansion

recursively expanded variables

reference to variables, reference to variables

relinking
remaking makefiles

removal of target files, removal of target files

removing duplicate words

removing, to clean up

reporting bugs

rm
r m(shell command), r m(shell command), r m(shell command), r m(shell command)

rule commands

rule dependencies

rule syntax

rule targets
rule, and $

rule, double-colon (: :)

rule, explicit, definition of

rule, how to write

rule, implicit

rule, implicit, and directory search
rule, implicit, and VPATH

rule, implicit, chains of

rule, implicit, definition of

rule, implicit, how to use

rule, implicit, introduction to

rule, implicit, predefined

rule, introduction to

rule, multiple for one target

rule, no commands or dependencies

rule, pattern
rule, static pattern

rule, static pattern versus implicit

rule, with multiple targets

s. (SCCSfile prefix)
SCCS, rule to extract from

search algorithm, implicit rule
search path for dependencies (VPATH)
search path for dependencies (VPATH), and implicit rules

search path for dependencies (VPATH), and link libraries

searching for strings

sed (shell command)

selecting words

seguences of commands

setting options from environment

setting options in makefiles

setting variables

several rulesfor one target

several targetsin arule
shar (standard target)
shell command

shell command, and directory search

shell command, execution

shell command, function for

shell file name pattern (ini ncl ude)
shell wildcards (ini ncl ude)
signal

silent operation

simple makefile

simple variable expansion

simplifying with variables

simply expanded variables

sorting words

spaces, in variable values

spaces, stripping

specia targets

specifying makefile name

standard input

standards conformance
standards for makefiles
static pattern rule

static pattern rule, syntax of

static pattern rule, versus implicit

stem, stem
stem, variable for

strings, searching for

stripping whitespace

sub-make
subdirectories, recursion for

substitution variable reference

suffix rule
suffix rule, for archive

suffix, adding
suffix, function to find

suffix, substituting in variables

switches
symbol directories, updating archive

syntax of rules

tab character (in commands)

tabsin rules

TAGS (standard target)
tangle, tangle

t ar (standard target)

target
target pattern, implicit

target pattern, static (not implicit)

target, deleting on error

target, deleting on interrupt

target, multiple in pattern rule

target, multiple rules for one

target, touching

targets
targets without afile

targets, built-in special

targets, empty

targets, force

targets, introduction to

targets, multiple

targets, phony

termina rule
t est (standard target)
testing compilation

tex, tex

TeX, ruleto run

texi2dvi, texi2dvi

Texinfo, rule to format
tilde (~)
t ouch (shell command), t ouch (shell command)

touching files

undefined variables, warning message

updating archive symbol directories
updating makefiles

value
value, how avariable gets it

variable
variable definition

variables
variables, “$ in nhame

variables, and implicit rule

variables, appending to

variables, automatic

variables, command line

variables, command line, and recursion

variables, computed names

variables, defining verbatim

variables, environment, variables, environment

variables, exporting

variables, flavors

variables, how they get their values

variables, how to reference

variables, loops in expansion

variables, modified reference

variables, nested references

variables, origin of

variables, overriding

variables, overriding with arquments

variables, recursively expanded

variables, setting

variables, smply expanded

variables, spacesin values

variables, substituting suffix in

variables, substitution reference

variables, warning for undefined

varying dependencies

verbatim variable definition
vpath

VPATH, and implicit rules
VPATH, and link libraries

weave, weave
Web, rule to run

what if

whitespace, in variable values

whitespace, stripping

wildcard
wildcard pitfalls

wildcard, function

wildcard, in archive member

wildcard, ini ncl ude
words, extracting first

words, filtering

words, filtering out

words, finding number

words, iterating over

Index of Functions, Variables, &

words, joining lists

words, removing duplicates

words, selecting

writing rule commands
writing rules

yacc, yacc

yacc
Y acc, rule to run

~ (tilde)

Directives

"y

$

&
=S

1%
=
)

& B &R
+ [+ [©
EEE

&
N
O

T

%

Eﬁ
> [>
U

, and static pattern

IR [*=

@ |2 |

% (automatic variable)
%D (automatic variable)
%F (automatic variable)

* (automatic variable)

* (automatic variable), unsupported bizarre usage

*D (automatic variable)

*F (automatic variable)

+ (automatic variable)

DEFAULT, .DEFAULT

.DEFAULT, and empty commands

DELETE ON_ERROR

EXPORT ALL VARIABLES, .EXPORT ALL VARIABLES

IGNORE, .IGNORE

.PHONY, .PHONY

.POSIX

.PRECIOUS, .PRECIOUS

SILENT, .SILENT
SUFFIXES, .SUFFIXES

/usr/gnu/include

/usr/include
/usr/local/include

< (automatic variable)

<D (automatic variable)
<F (automatic variable)

? (automatic variable)
?D (automatic variable)
?F (automatic variable)

@ (automatic variable)
@D (automatic variable)
@F (automatic variable)

" (automatic variable)

"D (automatic variable)

E (automatic variable)

addprefix
addsuffix

AR
ARFLAGS
AS

ASFLAGS

basename

cC
CFLAGS
co
COFLAGS
CPP
CPPFLAGS
CTANGLE
CWEAVE
CXX
CXXFLAGS

define
dir

export

FC
FFLAGS
filter
filter-out
findstring
firstword
foreach

GET
GFLAGS
GNUmakefile

ifdef

ifndef
fn

:

include

join

LDFLAGS
LEX
LFLAGS

MAKE, MAKE

Makefile

makefile

MAKEFILES, MAKEFILES
MAKEFLAGS

MAKEINFO

MAKELEVEL, MAKELEVEL

MAKEOVERRIDES
MFLAGS

notdir

origin
OUTPUT OPTION
override

patsubst, patsubst
PC

PFLAGS

RELAGS
RM

SHELL (command execution)

sort
drip

subst, subst
suffix
SUFFIXES

TANGLE
TEX
TEXI2DVI

unexport

VPATH, VPATH
vpath, vpath

WEAVE
wildcard, wildcard

word
words

y

« YACC
« YACCR
e YFLAGS

This document was generated on September, 22 1999 using texi2html 1.57.

http://www.mathematik.uni-kl.de/~obachman/Texi2html

	Table of Contents
	Overview of make
	How to Read This Manual
	Problems and Bugs

	An Introduction to Makefiles
	What a Rule Looks Like
	A Simple Makefile
	How make Processes a Makefile
	Variables Make Makefiles Simpler
	Letting make Deduce the Commands
	Another Style of Makefile
	Rules for Cleaning the Directory

	Writing Makefiles
	What Makefiles Contain
	What Name to Give Your Makefile
	Including Other Makefiles
	The Variable MAKEFILES
	How Makefiles Are Remade
	Overriding Part of Another Makefile

	Writing Rules
	Rule Syntax
	Using Wildcard Characters in File Names
	Wildcard Examples
	Pitfalls of Using Wildcards
	The Function wildcard

	Searching Directories for Dependencies
	VPATH: Search Path for All Dependencies
	The vpath Directive
	Writing Shell Commands with Directory Search
	Directory Search and Implicit Rules
	Directory Search for Link Libraries

	Phony Targets
	Rules without Commands or Dependencies
	Empty Target Files to Record Events
	Special Built-in Target Names
	Multiple Targets in a Rule
	Multiple Rules for One Target
	Static Pattern Rules
	Syntax of Static Pattern Rules
	Static Pattern Rules versus Implicit Rules

	Double-Colon Rules
	Generating Dependencies Automatically

	Writing the Commands in Rules
	Command Echoing
	Command Execution
	Parallel Execution
	Errors in Commands
	Interrupting or Killing make
	Recursive Use of make
	How the MAKE Variable Works
	Communicating Variables to a Sub-make
	Communicating Options to a Sub-make
	The `--print-directory' Option

	Defining Canned Command Sequences
	Using Empty Commands

	How to Use Variables
	Basics of Variable References
	The Two Flavors of Variables
	Advanced Features for Reference to Variables
	Substitution References
	Computed Variable Names

	How Variables Get Their Values
	Setting Variables
	Appending More Text to Variables
	The override Directive
	Defining Variables Verbatim
	Variables from the Environment

	Conditional Parts of Makefiles
	Example of a Conditional
	Syntax of Conditionals
	Conditionals that Test Flags

	Functions for Transforming Text
	Function Call Syntax
	Functions for String Substitution and Analysis
	Functions for File Names
	The foreach Function
	The origin Function
	The shell Function

	How to Run make
	Using Implicit Rules
	Using Implicit Rules
	Catalogue of Implicit Rules
	Variables Used by Implicit Rules
	Chains of Implicit Rules
	Defining and Redefining Pattern Rules
	Introduction to Pattern Rules
	Pattern Rule Examples
	Automatic Variables
	How Patterns Match
	Match-Anything Pattern Rules
	Canceling Implicit Rules

	Defining Last-Resort Default Rules
	Old-Fashioned Suffix Rules
	Implicit Rule Search Algorithm
	Arguments to Specify the Makefile
	Arguments to Specify the Goals
	Instead of Executing the Commands
	Avoiding Recompilation of Some Files
	Overriding Variables
	Testing the Compilation of a Program
	Summary of Options

	Using make to Update Archive Files
	Archive Members as Targets
	Implicit Rule for Archive Member Targets
	Updating Archive Symbol Directories

	Dangers When Using Archives
	Suffix Rules for Archive Files

	Features of GNU make
	Incompatibilities and Missing Features
	Makefile Conventions
	General Conventions for Makefiles
	Utilities in Makefiles
	Standard Targets for Users
	Variables for Specifying Commands
	Variables for Installation Directories

	Quick Reference
	Complex Makefile Example
	Index of Concepts
	Index of Functions, Variables, & Directives

